India-based Neutrino Observatory:

INO as an

atmospheric and magic-baseline detector

D. Indumathi

The Institute of Mathematical Sciences, Chennai For the INO Collaboration (http://www.ino.tifr.res.in)

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences: $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and the mixing angles θ_{ij} . Phase(s) unknown.

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences: $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and the mixing angles θ_{ij} . Phase(s) unknown.

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences: $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and the mixing angles θ_{ij} . Phase(s) unknown.

 $\Delta m_{21}^2 \sim 0.8 \times 10^{-4} \text{ eV}^2$; $|\Delta m_{32}^2| \sim 2.0 \times 10^{-3} \text{ eV}^2$; $\sum_i m_i < 0.7$ -2 eV.

Neutrino masses are not well-known. Oscillation studies only determine the mass-squared differences: $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and the mixing angles θ_{ij} . Phase(s) unknown.

 $\Delta m_{21}^2 \sim 0.8 \times 10^{-4} \text{ eV}^2$; $|\Delta m_{32}^2| \sim 2.0 \times 10^{-3} \text{ eV}^2$; $\sum_i m_i < 0.7$ -2 eV.

• $m_1 \sim m_2 \sim m_3 \sim 0.2 \text{ eV}$ (Degenerate hierarchy)

• $m_1 < m_2 \ll m_3$ (Normal hierarchy)

• $m_3 \ll m_1 < m_2$ Inverted hierarchy

(APS multi-divisional neutrino study, physics/0411216)

INO Status, in brief

- Stage 0 : Site survey, clearances, construction; we are here
 - Site: Bodi West Hills, 100 km west of Madurai $9^{\circ}58'$ N; $77^{\circ}16'$ E.
 - Detector R & D facility: at Madurai
 - Awaiting formal clearances: AEC for financial sanction.
 - Detector R & D proceeding apace; 1/1000 prototype at Kolkata; to start work on 1/100 model (actually 1/40 scale of one module).
- Stage I : Study of atmospheric neutrinos with magnetised iron calorimeter detector, ICAL; focus of this talk
- Stage II : Study of long-baseline neutrinos, from a neutrino factory/beta beam; attractive future possibility
- Collaboration: From all over India and one member from U. Hawaii.
- This is an open collaboration: we welcome you to join!

The choice of detector: ICAL

Use (magnetised) iron as target mass and RPC as active detector element. Reminder: KGF; MONOLITH detectors.

Atmospheric neutrinos have large L and E range. So ICAL has

- Large target mass: current design 52 kton;
- Solution Nearly 4π coverage in solid angle (except near horizontal);
- Upto ~ 20 GeV muons contained in fid. vol.: most interesting region for observing matter effects in 2–3 sector is 5–15 GeV;
- Good tracking and energy resolution;
- > ns time resolution for up/down discrimination; good directionality;
- Solution; magnetic field ~ 1.5 Tesla;
- Ease of construction (modular; 3 modules of 17 kTons each).

Note: Is sensitive to muons only, very little sensitivity to electrons.

The ICAL detector

- So kton iron, magnetised to ~ 1.5 T with 150 layers of 5.6 cm plates in three modules
- Similar Each module = $16 \times 16 \times 14.4 \text{ m}^3$

Specifications of the ICAL detector

ICAL				
No. of modules Module dimension Detector dimension No. of layers Iron plate thickness Gap for RPC trays Magnetic field	$\begin{array}{l} 3 \\ 16 \text{ m} \times 16 \text{ m} \times 14.4 \text{ m} \\ 48 \text{ m} \times 16 \text{ m} \times 14.4 \text{ m} \\ 150 \\ 5.6 \text{ cm} \\ 4.0 \text{ cm} \\ 1.5 \text{ Tesla} \end{array}$			
RPC				
RPC unit dimension Readout strip width No. of RPC units/Road/Layer No. of Roads/Layer/Module No. of RPC units/Layer Total no. of RPC units No. of electronic readout channels	$2 \text{ m} \times 2 \text{ m}$ 3 cm 8 8 192 $\sim 30,000$ 3.9×10^6			

Needs large industry interface.

Physics Studies

- All results shown are old and appear in various documents, including INO Report 2006.
- Fully revised studies going on. Major changes in
 - Jetector coding ported from GEANT3 \rightarrow GEANT4,
 - analyses for track reconstruction/fitting, esp. for muons,
 - neutrino generator.

So expect substantial improvement from older results.

- Solution Primary focus on muon detection for E, L, with hadron energy reconstruction; all hadrons leave similar signature in ICAL.
- Electrons leave few traces (rad. length 1.8 (11) cm in iron (glass)).
- Reiterate that primary goals are
 - \checkmark study of 2–3 mixing: magnitudes of Δm^2_{32} and $heta_{23}$
 - **●** Challenge: the sign of Δm_{32}^2 and octant of θ_{23} !
- Solution Best scenario if Daya Bay/D-CHOOZ/MINOS/T2K find signs of non-zero θ_{13} .

Precision measurement of parameters

Source: Atmospheric Neutrinos, 6 years' exposure, from Nuance neutrino generator. ICAL simulation with GEANT-3, $B_y = 1$ T.

Shown are 90 CL contours in comparison with Super-K and MINOS results. (Mar 2010) 3σ precision: $|\Delta m_{32}^2|$: 20% \sin^2_{23} : 60%

Adapted from the MINOS Neutrino 2010 talk, with INO contours added by hand.

Matter effect with atmospheric neutrinos

Solution Matter effects involve the participation of all three (active) flavours; hence involves both $\sin \theta_{13}$ and the CP phase δ_{CP} , in general.

R. Gandhi et al., Phys.Rev.Lett. 94 (2005) 051801; Phys.Rev. D73 (2006) 053001

Sensitivity to δ_{CP}

- Solution Mostly independent of the CP phase, $\delta_{\rm CP}$.
- ✓ Hence sensitive to the mass ordering of the 2–3 states, provided $\theta_{13} > 6^\circ$; however, needs large exposures.

D. Indumathi et al., Phys. Rev. D74 (2006) 053004 Oct 20, 2010, Nufact2010, TIFR, Mumbai – p. 10

The observable: the asymmetry

Hierarchy discriminator: difference in interactions between ν and $\overline{\nu}$.

$$\mathcal{A} = (U/D)_{\nu} - (\bar{U}/\bar{D})_{\bar{\nu}}$$

$$P_{\mu\mu}^{m}(A,\Delta) \approx P_{\mu\mu}^{(2)} - \sin^{2}\theta_{13} \times \left[\frac{A}{\Delta - A}T_{1} + \left(\frac{\Delta}{\Delta - A}\right)^{2} \left(T_{2}\sin^{2}[(\Delta - A)x] + T_{3}\right)\right]$$
$$\overline{P}_{\mu\mu}^{m}(A,\Delta) \approx P_{\mu\mu}^{(2)} - \sin^{2}\theta_{13} \times \left[\frac{-A}{\Delta + A}T_{1} + \left(\frac{\Delta}{\Delta + A}\right)^{2} \left(T_{2}\sin^{2}[(\Delta + A)x] + T_{3}\right)\right]$$

where T_i are functions of the parameters. $A \propto \rho E$. Changes sign between neutrinos and anti-neutrinos.

So $\mathcal{A}(A, \Delta) \approx -\mathcal{A}(A, -\Delta) = -\mathcal{A}(-A, \Delta) = \mathcal{A}(-A, -\Delta)$.

Oct 20, 2010, Nufact2010, TIFR, Mumbai – p. 11

A: The difference asymmetry

Asymmetry as a function of θ_{13} and L(km) / E(GeV)

Sign of $\delta \equiv \Delta m^2_{32}$ for

 $\theta_{13} = 5, 7, 9, 11^{\circ}$

Hence sensitive to the mass ordering (red vs blue) of the 2–3 states;

however, needs large exposures of about 500–1000 kton-years

(Resolutions determine error bars!)

D. Indumathi, M.V.N. Murthy, Phys.Rev. D71 (2005) 013001.

Hierarchy Reach

- Greater sensitivity in the case of Normal hierarchy
- \bullet Reiterate: Result independent of the CP phase $\delta_{\rm CP}$

- With exposures of 500 kton-years, can get a 90%CL result if $\sin^2 2\theta_{13} > 0.09 (10\% R_{\theta}, R_E)$ $\sin^2 2\theta_{13} > 0.07 (5\% R_{\theta}, R_E)$
 - However, needs large exposures of about 1000 kton-years for smaller θ_{13} or worse resolutions:

 $\sin^2 2\theta_{13} > 0.07$ (10% R_{θ} , 15% R_E) $\sin^2 2\theta_{13} > 0.05$ (5% R_{θ}, R_E)

S.T. Petcov, T. Schwetz, Nucl.Phys. B740 (2006) 1. R. Gandhi et al., Phys.Rev.D76:073012,2007.

The octant of θ_{23}

$$P_{\mu\mu}^{m} \approx 1 - \sin^{2} 2\theta_{23} \left[\sin^{2} \theta_{13}^{m} \sin^{2} \Delta_{21}^{m} + \cos^{2} \theta_{13}^{m} \sin^{2} \Delta_{32}^{m} \right] - \sin^{4} \theta_{23} \sin^{2} 2\theta_{13}^{m} \sin^{2} \Delta_{31}^{m} ,$$
$$P_{e\mu} \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}^{m} \sin^{2} \Delta_{31}^{m} ,$$

- Solutions of 20% from maximality at 99% CL provided $\sin^2 \theta_{13} > 0.015$ and 1000 kton-yr exposure
- Results much poorer for inverted hierarchy and solution in second octant.
- Will be strongly improved using neutrino-factory beams.

Rates at ICAL: E = 5-10 GeV

Solutions from both $P_{e\mu}$ and $P_{\mu\mu}$.

- Solution Events ratio for $\theta_{23} < 45^{\circ}$ is systematically larger than that for $\theta_{23} > 45^{\circ}$, provided θ_{13} is large enough.
- Solution This cannot be confused with the deviations in the ratio due to effects of θ_{13} (where peaks and troughs are systematically away from extremal).

Other physics possibilities

- ... with atmospheric neutrinos
- Solution Reminder: Both hierarchy and discrimination of octant of θ_{23} require $\theta_{13} > 7^{\circ}$ (sin² $2\theta_{13} > 0.06$); hard
- Discrimination between oscillation of ν_{μ} to active ν_{τ} and sterile ν_s from up/down ratio in "muon-less" events?
- Probing CPT violation from rates of neutrino to rates of anti-neutrino events in the detector: either from separate analysis of neutrino and anti-neutrino data (recent MINOS results) or via sensitivity to the δb term which adds to $\Delta m_{32}^2/(2E)$ in oscillation probability expression (LSND/MiniBooNe?)
- Solution Constraining long-range leptonic forces by introducing a matter-dependent term in the oscillation probability even in the absence of U_{e3} , so that neutrinos and anti-neutrinos oscillate differently.

Only $L_e - L_\mu$, $L_e - L_\tau$, $L_\mu - L_\tau$ can be gauged in anomaly-free way. If neutrinos are massive, then these are broken and have light relevant gauge bosons. This would influence nu-osc.

Cosmic Ray Muons

are a signal, not background, at high energies, due to pair-production (pair meter technique).

- Muon charge ratio gives information on meson production by primary cosmic rays. Example: π^+/π^- , K^+/K^- , etc.
- MINOS results in P. Schreiner, XVI Int. Symp. very high energy cosmic interactions, (ISVHECRI 2010), July 2010.
 Oct 20, 2010, Nufact2010, TIFR, Mumbai – p. 17

Stage II: Neutrino factories and INO

- Solution The magic baseline, where the event rate is independent of the CP phase δ_{CP} , occurs at $\sqrt{2}G_F n_e L = n\pi$. So $L \sim 7400$ km. (*P. Huber, W. Winter, Phys.Rev.D68 (2003) 037301.*)
- Solution The degeneracies associated with $\delta_{\rm CP}$ and $\delta_{\rm CP}$ —sin² θ_{13} are lifted. Implies greater sensitivity to both θ_{13} and the magnitude and sign of Δm_{32}^2 .
- Standard route: *wrong sign* muons as a signal of oscillation.
- Technical point: the uncertainties will be reduced compared to atm. experiment because there is no uncertainty in L.

θ_{13} Sensitivity

- Solution Case: $10^{-4} < \sin^2 2\theta_{13} < 10^{-2}$. Mass hierarchy determined for all δ_{CP} ; may be sensitive to matter profile.
- Solution Case: $\sin^2 2\theta_{13} > 10^{-2}$. Max. sensitivity to matter profile; helps unfold degeneracies with shorter baselength detector.

R. Gandhi, W. Winter, Phys. Rev. D75:053002, 2007

Hierarchy Sensitivity

Sensitivity to hierarchy and CP violation as a function of baselength with a 50 GeV muon factory beam.

P. Huber et al., Phys.Rev.D74, 073003.

Sensitivity to θ_{23}

- 25 GeV muon beam of both signs; 5×10^{20} useful decays per year;
 50 kton detector, 5 year sample, $\Delta E_{\mu} = 7\%$.
- Note contamination due to tau decays into (right sign) muons.

Nita Sinha, talk in this meeting.

Magic baseline beta beams

- Beta beams are pure ν_e ($\overline{\nu}_e$) (⁸B, ⁸Li) beams, so muons clearly indicate oscillation.
- End-point energies are low: ~ 13 MeV; so large boosts needed. $\gamma \sim 500$ for B and Li. So challenging.
- Since muons are already a signal for oscillation, much less dependent on charge identification.

 $\mathbf{I}_{\mathbf{k}}(\mathbf{km})$

Oct 20, 2010, Nufact2010, TIFR, Mumbai - p. 22

Sensitivity of beta beams

- σ sensitivity/discovery reach with 1.1(2.9) $\times 10^{18}$ useful decays/year.
- **9** 5 years, both ν and $\overline{\nu}$ data.

S.K. Agarwalla, S. Choubey, A. Raychaudhuri, Nucl. Phys. B798:124, 2008.

How magical is it?

- ✓ Effect of adding both neutrino and antineutrino channels is to constrain θ_{13} in such a way that the wrong sign hierarchy is rejected to values of $\sin^2 2\theta_{13}$ more than 15–20 times smaller!
- Solution Figure shows effect of varying δ_{CP} from 0–2 π at L = 7150 km (old CERN–INO baseline).
- So need to redo the results for new baselines.

Outlook

- Hoping for quick clearances and movement on INO construction front.
- The physics case looks good: needs strengthening by detailed simulations, which are now in progress.
 - Atmospheric neutrinos provide sensitivity to 2–3 mixing parameters, although not to θ_{13} .
 - Non-oscillation physics is possible via study of high energy cosmic rays muons.
 - ICAL at INO is well-suited (both because of its physical characteristics such as charge identification capability and its large mass, as well as its unique near-magic-baseline location) to be a far-end detector for a future beam facility.
 - Hence there is also a good case to explore the physics of ICAL with muon factory beams and/or beta beams.

Additional Slides

3σ Precision of parameters

at $\Delta m^2_{32} = 2.0 \times 10^{-3} \text{ eV}^2$ and $\sin^2 \theta_{23} = 0.5$

Experiment	$P(\Delta m^2_{32})$	$P(\sin^2 heta_{23})$	hierarchy
Current	88%	79%	_
MINOS	17%	65%	-
CNGS	37%	-	_
NO $ u$ A ($6 imes 10^{21}$ pot)	\sim 5%	\sim 9%	in comb
T2K (Super-K, 0.75 MW)	12%	46%	
ICAL (50 kton)	20%	60%	$\sin^2 2\theta_{13} > 0.06$

δ_{δ} Disappearance Measurement

• NO δA can still do δ_{δ} disappearance measurement, measure the mixing angle δ_{23} and δm^2_{23} .

Measure sin²2 δ_{23} to 0.5-1%

aius Howcroft

Measurement unique to NO δA

aius Howcroft

Oct 20, 2010, Nufact2010, TIFR, Mumbai - p. 30