Some attempts to explain MINOS anomaly

Osamu Yasuda Tokyo Metropolitan University

Oct. 21, Nufact2010, TIFR

1. Introduction

2. High energy behavior of ν_{atm} data, NSI & ν_{s}

3. MINOS anomaly, NSI & ν_{s}

4. Conclusions

1. Introduction

Candidates for new physics to be tested at future LBL

Scenarios	Phenomenological bound on deviation from standard case
NSI at production / detection	0(1%)
NSI in propagation $\epsilon_{\mu\alpha}$	O(1%)
NSI in propagation $\epsilon_{e\tau}$	O(100%)
Violation of unitarity due to heavy particles	O(0.1%)
Light sterile neutrinos	0(10%)

• NP in propagation (NP matter effect)

• Constraints on $\epsilon_{\alpha\beta}$

Davidson et al., JHEP 0303:011,2003; Berezhiani, Rossi, PLB535 ('02) 207; Barranco et al., PRD73 ('06) 113001; Barranco et al., arXiv:0711.0698

Biggio et al., JHEP 0908, 090 (2009) w/o 1-loop arguments

Constraints from ν_{atm} and SBL

Donini-Maltoni-Meloni-Migliozzi-Terranova, JHEP 0712:013,'07

2. High energy behavior of ν_{atm} data, NSI & ν_{s}

• Standard case with $N_v=2$

$$1 - P(\nu_{\mu} \rightarrow \nu_{\mu}) = \sin^2 2\theta_{\text{atm}} \sin^2 \left(\frac{\Delta m_{\text{atm}}^2 L}{4E}\right) \propto \frac{1}{E^2}$$

• Standard case with $N_v=3$

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \sim \left(\frac{\Delta m_{31}^2}{2AE}\right)^2 \left[\sin^2 2\theta_{23} \left(\frac{c_{13}^2 AL}{2}\right)^2 + s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{AL}{2}\right)\right] \propto \frac{1}{E^2}$$

• Deviation of 1-P($\nu_{\mu} \rightarrow \nu_{\mu}$) due to NP contradicts with data

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \simeq \mathbf{C_0} + \frac{\mathbf{C_1}}{E} + \frac{c_{20}L^2 + c_{21}\sin^2(c_{22}L)}{E^2}$$

 \rightarrow High v_{atm} data gives constraints on NP:

$$|c_0| \ll 1, |c_1| \ll 1$$

•with NSI

$$1 - P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq C_{0} + \frac{C_{1}}{E} + \frac{c_{20}L^{2} + c_{21}\sin^{2}(c_{22}L)}{E^{2}}$$

$$|C_{0}| \ll 1 \rightarrow |E_{e\mu}| <<1, |E_{\mu\mu}| <<1, |E_{\mu\tau}| <<1$$

$$|E_{\mu\tau}| <<1: \text{Already shown for N_{v}=2 by Fornengo et al.,}$$
PRD65, 013010, '02; Gonzalez-Garcia&Maltoni, PRD70, 033010, '04; Mitsuka@nufact08,NOW2010

$$\rightarrow \text{From our argument this is valid also for N_{v}=3}$$
Oki & OY, PRD82, 073009, '10

$$|E_{\mu\mu}| <<1: \text{Already shown by Davidson et al. JHEP 0303:011, '03}$$
from data of other experiments

E_{θμ} <<1: New observation (analytical consideration only) Oki & OY, PRD82, 073009, '10

$$|\mathbf{c}_{1}| \ll \mathbf{1} \rightarrow |\mathbf{\varepsilon}_{\tau\tau}| |\mathbf{\varepsilon}_{e\tau}|^{2} / (\mathbf{1} + \mathbf{\varepsilon}_{ee})| <<1$$

Already shown by Friedland-Lunardini, PRD72:053009,'05

• Summary of the constraints on $\mathcal{E}_{\alpha\beta}$

To a good approximation, we are left with 3 independent variables ε_{ee} , $|\varepsilon_{e\tau}|$, $\arg(\varepsilon_{e\tau})$:

$$A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix}$$

$$A \begin{pmatrix} 1 + \epsilon_{ee} \\ 0 \\ \epsilon_{e\tau}^* \end{pmatrix}$$

$$e = 0 = \epsilon_{e au} \\ 0 = 0 \\ 0 = |\epsilon_{e au}|^2/(1+\epsilon_{ee})$$

Furthermore, V_{atm} data implies

•with
$$v_{\rm s}$$
 $1 - P(\nu_{\mu} \to \nu_{\mu}) \simeq c_0 + \frac{c_1}{E} + \frac{c_{20}L^2 + c_{21}\sin^2(c_{22}L)}{E^2}$

$$|c_0| \propto s_{24}^2 \ll 1 \rightarrow s_{24}^2 \ll 1$$

$$|c_1| \propto s_{34}^2 \ll 1 \rightarrow s_{34}^2 \ll 1$$

Donini-Maltoni-Meloni-Migliozzi-Terranova, JHEP 0712:013,'07

3. MINOS anomaly

Vahle@nu2010

An effort to explain with $\epsilon_{\mu\tau}$

Mann-Cherdack-Musial-Kafka, arXiv:1006.5720 [hep-ph]

Contradicts with v_{atm} constraint

An effort to explain with $\epsilon_{\mu\tau}$

Kopp-Machado-Parke, arXiv:1009.0014 [hep-ph]

v_{atm} constraint

An effort to explain with gauging L_{α} - L_{β}

An effort to explain with $\epsilon_{e\tau}$

Unpublished work by OY (2010)

$$A \begin{pmatrix} 1 + \epsilon_{ee} & 0 & \epsilon_{e\tau} \\ 0 & 0 & 0 \\ \epsilon_{e\tau}^* & 0 & |\epsilon_{e\tau}|^2/(1 + \epsilon_{ee}) \end{pmatrix}$$

• Best fit point lies in the excluded region of v_{atm} • $\chi^2(SM)-\chi^2(min)=0.1$ (2dof): 0.07 σ (not significant at all) \rightarrow Probably not worth introducing $\varepsilon_{e\tau}$

An effort to explain with ν_s or ν_s +gauged B-L

Engelhardt-Nelson-Walsh, Phys.Rev.D81:113001,2010

Best fit • with B-L $\Delta m_{32}^2 = 2.5 \times 10^{-3} eV^2$, $\Delta m_{42}^2 = 2.5 \times 10^{-2} eV^2$, $V_{NC}/2 + V_{B-L} = 5 \times 10^{-14} eV$, $\chi^2 = 24.8$ (20 dof) • w/o B-L $\Delta m_{32}^2 = 1.8 \times 10^{-3} eV^2$, $\Delta m_{42}^2 = 9.5 \times 10^{-2} eV^2$, $\chi^2 = 28.1$ (21 dof)

An effort to explain with ν_{s}

• $\theta_{24}=0 \rightarrow no \text{ conflict with CDHSW}$

new data is used

•
$$\Delta m_{42}^2$$
 is fixed as $1eV^2$

• potential enhancement for \overline{v} / suppression for v occurs if $\theta_{34} < \pi/4$ &NH or $\theta_{34} > \pi/4$ &IH

$$\tan 2\tilde{\theta}_{23} = \frac{\Delta E_{32} \sin 2\theta_{23}}{\Delta E_{32} \cos 2\theta_{23} \pm V s_{34}^2} \sin^2 2\tilde{\theta}_{23} = \frac{\left(\Delta E_{32} \sin 2\theta_{23}\right)^2}{\left(\Delta E_{32} \cos 2\theta_{23} \pm V s_{34}^2\right)^2 + \left(\Delta E_{32} \sin 2\theta_{23}\right)^2}$$
$$1 - P(v_{\mu} \rightarrow v_{\mu}) = \sin^2 2\tilde{\theta}_{23} \sin^2 \left(\frac{\Delta \tilde{E}_{32}L}{2}\right) \Delta \tilde{E}_{32} \equiv \sqrt{\left(\Delta E_{32} \cos 2\theta_{23} \pm V s_{34}^2\right)^2 + \left(\Delta E_{32} \sin 2\theta_{23}\right)^2}$$

 $\sin^2 2\tilde{\theta}_{23}$ is almost 1 anyway \rightarrow difficult to distinguish v & \overline{v}

(Best fit point with v_s) = (Best fit point for N_v=3 case)

→ Probably not worth introducing

4. Conclusions

•People made efforts to account for MINOS anomaly, but they all seem either to give little contribution to distinguish $v \& \overline{v}$ or to have conflict with atmospheric neutrinos and/or solar neutrinos.

•After all, MINOS anomaly is only a 2σ effect, so we should wait until we have more statistics.

(3+1)-scheme

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2)\sin^2(\Delta m_{41}^2 L/4E)$$
$$P(\nu_\mu \to \nu_\mu) = 1 - 4|U_{\mu4}|^2(1 - |U_{\mu4}|^2)\sin^2(\Delta m_{41}^2 L/4E)$$

$$\sin^2 2\theta_{Bugey} > 4 \left| U_{e4} \right|^2 (1 - \left| U_{e4} \right|^2) = \sin^2 2\theta_{14}$$

$$\sin^{2}2\theta_{CDHSW} > 4 \left| U_{\mu 4} \right|^{2} (1 - \left| U_{\mu 4} \right|^{2}) \cong \sin^{2}2\theta_{24}$$

