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vestigated the phenomenology of such subdominant NSI, both model-independently [10–15] and in
concrete models [7, 10, 16–24]. In particular, NSI have been considered in the context of solar neu-
trino observations [6, 9, 10, 25–31], reactor neutrino experiments [32], atmospheric neutrinos [33–
39], conventional and upgraded neutrino beams [36, 38, 40–49], neutrino factories [13, 41, 50–63],
beta beams [64], supernova neutrinos [65, 66], cosmological relic neutrinos [67], high energy astro-
physical neutrinos [68], e

+
e
− colliders [69, 70], low-energy flavor violation searches in the charged

lepton sector [71, 72], neutrino-electron scattering [73, 74] and neutrino-nucleus scattering [74, 75].
Model-independent experimental bounds on NSI, derived from oscillation and non-oscillation data,
are reviewed in [39, 71, 76]. In the context of the latest MINOS results, NSI have been brought up
in [77, 78], and a concrete model has been proposed in [79].

In the following, we will first show analytically how NSI affect neutrino oscillations in the two
flavor limit (sec. 2), and then perform fits to the MINOS νµ and ν̄µ data including different types of
NSI (sec. 3). In sec. 4, we will consider the potential of the T2K [80] and NOνA [81] experiments to
test the NSI interpretation of MINOS. Finally, we will discuss our results from the model-building
point of view and draw our conclusions in sec. 5.

2. ANALYTICAL FRAMEWORK OF NON-STANDARD INTERACTIONS

2.1. Neutral current NSI

At O(GeV) energies relevant to neutrino oscillation experiments, non-standard interactions can
be introduced in the Lagrangian as effective dimension 6 operators coupling neutrinos and charged
fermions. We will first discuss new neutral current couplings of µ and τ neutrinos to normal
matter, i.e. electrons, up-quarks, and down-quarks. Phenomenologically, such operators will result
in non-standard matter effects, so that the Hamiltonian governing neutrino propagation in the µ–τ
sector will read

H =
1

2E

�
U

�
0

∆m
2
32

�
U

† + A

�
�m
µµ �m

µτ

�m∗
µτ �m

ττ

� �
, (1)

where

U =
�

cos θ23 sin θ23

− sin θ23 cos θ23

�
(2)

is the leptonic mixing matrix with the mixing angle θ23, E is the neutrino energy, and A =
2
√

2GF NeE is the matter potential depending on the electron number density Ne along the neu-
trino trajectory. The parameters �m

µµ, �m
µτ , and �m

ττ give the relative strength of the non-standard
interactions compared to Standard Model weak interactions. The superscript m indicates that
these parameters describe non-standard neutrino matter effects. �m

µτ can in general be complex,
while �m

µµ and �m
ττ have to be real in order to preserve the hermiticity of the Hamiltonian. In

the following, we will set �m
µµ = 0 since terms proportional to the identity matrix do not affect

the neutrino oscillation probability, implying that oscillation experiments are only sensitive to the
combination �m

ττ − �m
µµ.

The disappearance probability for νµ in matter of constant density is given by

P (νµ → νµ) = 1− sin2 2θN sin2

�
∆m

2
NL

4E

�
. (3)
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where θN and ∆m2
N are the mixing angle and mass squared difference in matter. These matter

oscillation parameters can be found by solving the following set of coupled equations,

∆m2
N cos 2θN = ∆m2

32 cos 2θ23 + �m
ττA , (4)

∆m2
N sin 2θNeiφN = ∆m2

32 sin 2θ23 + 2�m
µτA . (5)

The phase φN is unobservable in oscillations and can be phased away. The solution is trivial to

find and is given by

∆m2
N =

�
(∆m2

32 cos 2θ23 + �m
ττA)2 + |∆m2

32 sin 2θ23 + 2�m
µτA|2 (6)

and sin
2
2θN = |∆m2

32 sin 2θ23 + 2�m
µτA|2/∆m4

N . (7)

Thus, the disappearance probability can be written as

P (νµ → νµ) = 1−
|∆m2

32 sin 2θ23 + 2�m
µτA|2

∆m4
N

sin
2

�
∆m2

NL

4E

�
. (8)

with ∆m2
N given by eq. (6). This expression agrees with that found in ref. [46] when expanded to

first order in �m
µτ and �m

ττ .

In vacuum, A = 0, and eq. (8) reduces to the standard two flavor disappearance probability. In

the small L/E limit, i.e. when sin
2
(∆m2

NL/4E) ≈ (∆m2
NL/4E)

2
,

P (νµ → νµ) ≈ 1−
����sin 2θ23 +

2�m
µτA

∆m2
32

����
2 �

∆m2
32L

4E

�2

, (9)

so �m
µτ modifies the disappearance probability in this limit whereas �m

ττ does not.

For anti-neutrinos, �m
µτ → �m∗

µτ and A→ −A, so that in matter

P (νµ → νµ) �= P (ν̄µ → ν̄µ) (10)

without CPT violation.

We note three interesting symmetries in eq. (8): First, the expression depends only on

cos[arg(�m
µτ )], not on sin[arg(�m

µτ )]. Therefore, it is invariant under the replacement

arg(�m
µτ )→ 2πn− arg(�m

µτ ) (11)

for arbitrary integer n. Moreover, it is easy to verify that P (νµ → νµ) is also invariant under the

simultaneous replacements

�m
µτ → −�m

µτ , �m
ττ → −�m

ττ , ∆m2
32 → −∆m2

32 . (12)

as well as under the transformation

�m
ττ → −�m

ττ , θ23 →
π

2
− θ23 . (13)

These symmetries will generate an eightfold degeneracy. For fixed E, P (νµ → νµ) has an additional,

continuous, symmetry: It is invariant under any simultaneous variation of ∆m2
32, θ23 , �m

ττ , |�m
µτ |,

and arg(�m
µτ ) that leaves ∆m2

N and sin
2
2θN invariant. If we demand this invariance for neutrinos

and anti-neutrinos, we obtain 4 equations for 5 free parameters, implying that the symmetry is

continuous. However, since A is energy-dependent, this symmetry will not be manifest in the
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Figure 1: The survival probability for MINOS (L = 735 km) with a variety of neutral current NSI (non-

standard matter effects) turned on as indicated in the plot. The solid (blue) lines are the neutrino survival

probabilities whereas the dashed (red) lines are for anti-neutrinos. The dotted (black) lines are the vacuum

survival probabilities. For the standard oscillation parameters, we have assumed ∆m2
32 = +2.86× 10−3 eV2

and sin
2 θ23 = 0.38.

MINOS data, which covers a broad range of energies, and we will therefore not consider it further

in this paper.

Note that these symmetries are exact only in the two-flavor framework. In the three-flavor case

with large θ13, it is for example possible to determine the mass hierarchy by observing standard
matter effects either in the νµ → νe channel or directly in the νµ → νµ channel [82].

In fig. 1 we have plotted the disappearance probabilities with all three combinations of non-zero

�m
µτ and/or �m

ττ for representative values of the �m’s for the MINOS experiment. One can see that

non-zero �m
µτ changes the disappearance probability most notably at large energies and shifts the

position of the minimum in energy. Whereas non-zero �m
ττ changes the disappearance probability

most notably near the first oscillation minimum, especially in the depth of the minimum. Since the

tension between MINOS neutrino and anti-neutrino data is both in the position of the minimum

and in its depth, one requires non-zero �m
µτ and non-zero �m

ττ in order to lift the tension in the

optimal way.

2.2. Charged current NSI

As an alternative to neutral current NSI, we also discuss non-standard charged current inter-

actions affecting the neutrino production and/or detection processes as an explanation for the

MINOS results. If the Wilson coefficients of the corresponding effective operators are complex, the
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Figure 4: Constraints on the parameter space of neutral current non-standard interactions in the µ–τ
sector from MINOS νµ and ν̄µ data. Each panel corresponds to a projection of the three-dimensional NSI
parameter space along one of its axes. This means that in each panel we have marginalized over one of the
NSI parameters (as well as the six standard oscillation parameters). The best fit points are indicated by the
colored dots. The symmetries from eqs. (11) and (12) are clearly visible in the plot, while the additional
two-fold ambiguity eq. (13) is implicit. In the bottom panels, we explicitly indicate the parameter regions
corresponding to a normal mass hierarchy (NH) and to an inverted mass hierarchy (IH), while in the top
panel, NH and IH contours lie on top of each other. Exclusion limits from other experiments [39, 76] are
shown in gray. See text for caveats pertaining to bounds from atmospheric neutrino measurements.

with χ2/dof = 15.9/15. The predicted MINOS event spectra at this point are shown as the solid
blue histograms in fig. 3.

In fig. 5, we show the allowed regions in the |�d
τµ|–arg(�d

τµ) plane determined by our fit. The
continuous family of best fit points is indicated by the thin dash-dotted black curves. To the
best of our knowledge, no bound on the vector-type ντ–µ CC NSI considered here exists in the
literature. (The bounds of order 0.1 derived in ref. [76] apply only to axial-vector operators.)
However, using the methods developed in refs. [71, 72], the experimental limit on the branching
ratio of the flavor-violating decay τ± → µ±π0 [87] can be translated into a bound of order 0.2 on
|�d

τµ| (and, in fact, also on the related coefficient |�d
µτ |) for vector and axial-vector type interactions

(see appendix B for details and caveats). We expect that a bound could also be derived from

Mann-Cherdack-Musial-Kafka, arXiv:1006.5720 [hep-ph]

3 times larger than given in 

3 flavor simulation:
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collaboration [1].
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Figure 9: (a) and (b) The loop diagrams used to constrain �d
τµ and �d

µτ , respectively. (c) A similar diagram
that does not have a logarithmic divergence.

independent 4% (3%) normalization uncertainties on the signal (background) rates for neutrinos,
and 5% (5%) normalization uncertainties on the signal (background) rates for anti-neutrinos.

Appendix B: NEW LOOP BOUNDS ON NON-STANDARD INTERACTIONS

Here, we outline the calculation of the loop diagram fig. 9 (a) which we use to translate the
experimental bound on the rare decay τ± → µ±π0 into a constraint on |�d

τµ|. Following refs. [71, 72,
76], we perform the calculation in unitary gauge and keep only the logarithmically divergent part.
Indeed, it has been argued that the finite and quadratically divergent terms cannot be calculated in
a model-independent way, while the logarithmic divergence corresponds to the model-independent
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Figure 2: The apparent survival probability for MINOS (L = 735 km) without NSI (black dotted curve), and

in a scenario with non-zero �d
τµ. The solid (blue) line in this case is for neutrinos, while the red (dashed) line

is for anti-neutrinos. For the standard oscillation parameters, we have assumed ∆m2
32 = +2.74× 10−3 eV2

and sin
2 θ23 = 0.41.

without CPT violation.

Note that the non-standard terms proportional to |�d
τµ| and |�d

τµ|2 in the first line of eq. (16) have

the same energy dependence as the standard oscillation term and can therefore change only the

depth of the oscillation dip, but not its position. They can thus only change the apparent value of

sin
2
2θ23 that would be reconstructed in a standard oscillation analysis neglecting NSI. Moreover,

these terms do not depend on the sign of arg(�d
τµ) and can therefore not introduce an asymmetry

between neutrinos and anti-neutrinos. The interference term between standard and non-standard

amplitudes in the second line of eq. (16), on the other hand, can be different for neutrinos and anti-

neutrinos. Since eq. (16) is invariant under the simultaneous replacements arg(�d
τµ) → − arg(�d

τµ)

and ∆m2
32L/4E → π − ∆m2

32L/4E, the depth of the oscillation minimum will be the same for

neutrinos and anti-neutrinos, and only its position will be different. This is also illustrated in

fig. 2, where we plot P̃ (νµ → νµ) including non-zero �d
τµ for neutrinos and anti-neutrinos.

Like eq. (8) for neutral current NSI, also eq. (16) exhibits several symmetries. In particular,

the expression is invariant under the simultaneous replacements

arg(�d
τµ)→ 2πn− arg(�d

τµ) , ∆m2
32 → −∆m2

32 (18)

and under the transformation

arg(�d
τµ)→ (2n + 1)π − arg(�d

τµ) , θ23 →
π

2
− θ23 (19)

for arbitrary integer n. Actually, the second of these symmetries can be generalized to a contin-

uous symmetry. To see this, note that eq. (16) is invariant under simultaneous changes of |�d
τµ|,

arg(�d
τµ), and θ23, provided that the coefficients of the energy dependent factors sin

2
[∆m2

32L/4E]

and sin[∆m2
32L/4E] cos[∆m2

32L/4E] remain invariant. This requirement imposes two constraints

on the three parameters |�d
τµ|, arg(�d

τµ), and θ23, so that there will be an infinite set of solutions.
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Figure 5: Constraints on the parameter space of charged current non-standard interactions between ντ and
muons from MINOS νµ and ν̄µ data. We have used a full three-flavor fit, marginalizing over the standard
oscillation parameters. The discrete and continuous symmetries from eqs. (18) and (19) are clearly visible in
the plot. The thin dash-dotted black curves indicate the positions of the approximately degenerate best fit
points. We explicitly indicate the parameter regions corresponding to a normal mass hierarchy (NH, blue)
and to an inverted mass hierarchy (IH, red). See text for comments on existing constraints on CC NSI.

lepton universality considerations in weak decays of parity-even hadrons, but that it would not
be stronger than O(0.1). Also, atmospheric neutrinos are sensitive to |�d

τµ|, but since CC NSI are
not enhanced by the long baselines of atmospheric neutrinos, we expect these constraints to be
relatively weak as well.

4. TESTING THE NSI INTERPRETATION OF MINOS DATA IN FUTURE
EXPERIMENTS

To corroborate or refute the hypothesis of large non-standard interactions as an explanation
for the apparent discrepancy between neutrino and anti-neutrino results in MINOS, it will be
mandatory to gather more statistics in MINOS itself, and to look for possible NSI signals in future
experiments like T2K and NOνA. In the following, we will neglect neutral-current NSI since we have
seen in sec. 3.1 that they are disfavored as an explanation for the MINOS data by atmospheric
neutrinos. Instead, we will focus on CC NSI. We have computed the expected event spectrum
in MINOS, T2K, and NOνA assuming the values of the standard and non-standard oscillation
parameters to be given by the MINOS best fit point eq. (21). We have then attempted a standard
oscillation (no NSI) fit to this simulated data. If this fit is incompatible with the simulated data
at a given confidence level, we say that the existence of a non-standard effect can be established
experimentally at this confidence level. Our simulation of T2K follows [88–90], while that of NOνA
is based on [81, 91]. We include only the νµ and ν̄µ disappearance channels.

In fig. 6, we show the predicted discovery potential in MINOS, T2K, and NOνA as a function of
the integrated luminosity in neutrino mode and the integrated luminosity in anti-neutrino mode.
We also indicate how the number of protons on target (pot) translates into a time of running at
nominal luminosity (2.5×1020 pot/year for MINOS, 6×1020 pot/year for NOνA, and 1021 pot/year
for T2K). We see that optimal sensitivity is achieved if slightly more time is spent on running in anti-
neutrino mode than on running in neutrino mode. This is easily understandable since the assumed

3 flavor simulation:
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Appendix B: NEW LOOP BOUNDS ON NON-STANDARD INTERACTIONS

Here, we outline the calculation of the loop diagram fig. 9 (a) which we use to translate the
experimental bound on the rare decay τ± → µ±π0 into a constraint on |�d

τµ|. Following refs. [71, 72,
76], we perform the calculation in unitary gauge and keep only the logarithmically divergent part.
Indeed, it has been argued that the finite and quadratically divergent terms cannot be calculated in
a model-independent way, while the logarithmic divergence corresponds to the model-independent
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one-loop renormalization group running of the effective NSI operator from the UV completion
scale down to MW [71, 72, 76]. (This argument is invalid if the UV complete theory leads to
another effective operator having the same renormalization group running and exactly canceling
the NSI operator. If that case is considered, no model-independent bound on |�d

τµ| can be derived.)
Neglecting fermion masses, we find that the logarithmically divergent part of fig. 9 (a) is

3
√

2GF �d
τµVud α

2πs2
w

log
Λ

MW

�
τ̄ γµPLµ

��
ūγµPLu

�
, (B1)

where α is the electromagnetic fine structure constant, sw is the sine of the weak mixing angle, Vud

is a CKM matrix element, PL = (1−γ5)/2, and Λ is the UV completion scale. Comparing eq. (B1)
to the operator 2

√
2GF Vud [τ̄ γµPLντ ][ūγµPLd] responsible for the standard decay τ± → π±ντ ,

using the QCD isospin symmetry between π0 and π±, and assuming log Λ/MW ∼ O(1), we find

|�d
τµ| �

�
2 BR(τ± → µ±π0)
BR(τ± → π±ντ )

4πs2
w

3α
. (B2)

The factor 2 below the square root is due to the fact that the π0 can be interpreted as a state
(ūu − d̄d)/

√
2 whose overlap with the final state ūu from fig. 9 (a) is only 1/

√
2. With the

experimental constraint BR(τ± → µ±π0) < 1.1× 10−7 [87], eq. (B2) leads to the new bound

|�d
τµ| � 0.20 . (B3)

In full analogy to the above, we can also use fig. 9 (b) to set a bound on �d
µτ :

|�d
µτ | � 0.20 . (B4)

Note that diagrams like the one in fig. 9 (c) with d̄d in the final state do not contribute to these
bound because they do not have logarithmic divergences.

While we have derived eqs. (B3) and (B4) by assuming vector-type NSI, our calculations can
be easily generalized to set equivalent bounds on axial-vector operators and on V − A operators,
while no constraints can be derived for V + A type interactions since the diagrams in fig. 9 are
suppressed by a neutrino mass insertion in this case.
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Figure 3: Comparison of MINOS data (black dots and error bars) to theoretical predictions including

neutral-current NSI parameterized by the best fit point eq. (20) (blue dotted histograms) and charged

current NSI parameterized by the best fit point eq. (21) (blue solid histograms). For comparison, the red

dashed histograms show the theoretical prediction in the absence of neutrino oscillations, and the pink dash-

dotted histograms represent the results of a two-flavor standard oscillation fit to the combined νµ and ν̄µ

data.

The compatibility of the parameter region favored by MINOS with existing constraints depends

strongly on whether atmospheric neutrino bounds are taken into account. Atmospheric neutrinos

are very sensitive to non-standard matter effects since they can travel over very long distances

inside the Earth before reaching the detector. Therefore, the MINOS-favored region of parameter

space is in conflict with the limits derived in refs. [35, 39] from MACRO and Super-Kamiokande

data. While these bounds are numerically very strong, they have been derived in a two-flavor

framework. It has been called into question whether they would still hold when standard and non-

standard three-flavor effects are taken into account [38, 48]. While we consider it highly unlikely

that three-flavor effects would weaken the atmospheric neutrino bounds on NC NSI by the amount

required to restore compatibility with the MINOS-favored parameter region, we cannot definitely

rule out NC NSI as an explanation for the MINOS data at this time.

3.2. Charged current NSI

Let us now turn to the investigation of the charged current NSI introduced in sec. 2.2. We

fit the MINOS data using a three-flavor analysis including the NSI parameters |�d
τµ| and arg(�d

τµ),

but, as for the neutral current case, we find that three-flavor effects are small. In particular, the

symmetries of the νµ survival probability found in sec. 2.2 for the two-flavor case are present also

in the three-flavor framework. In particular, this means that there is a continuous family of best

fit points (see eqs. (18) and (19), and the continuous generalization of (19) at the end of sec. 2.2).

For reference, we here give one representative point from this family that is most consistent with

existing bounds on |�d
τµ|:

�d
τµ = 0.12 i = 0.12 e0.5iπ , sin

2 θ23 = 0.41 , ∆m2
32 = +2.74× 10

−3
eV

2 , (21)



Stephen Parke                                      NuFact 2010 @  TIFR                                    Oct 21, 2010                     

CC-NSI in future exp.

13

11

1019 1020 1021
1019

1020

1021

pot in neutrino mode

po
ti
n
an
tin
eu
tri
no
m
od
e

CC NSI discovery reach in MINOS

90�

3Σ

5Σ

ΝΜ�ΝΜ

ΕΤΜd �0.12e0.5 i Π

current �int

0.5 yrs

0.5 yrs

1 yrs

1 yrs

3 yrs

3 yrs

1020 1021 1022

1020

1021

1022

pot in neutrino mode

po
ti
n
an
tin
eu
tri
no
m
od
e

CC NSI discovery reach in T2K

90�

3Σ

5Σ

ΝΜ�ΝΜ
0.5 yrs

0.5 yrs

1 yrs

1 yrs

3 yrs

3 yrs

1020 1021

1020

1021

pot in neutrino mode

po
ti
n
an
tin
eu
tri
no
m
od
e

CC NSI discovery reach in NOΝA

90�

3Σ

5Σ

ΝΜ�ΝΜ
0.5 yrs

0.5 yrs

1 yrs

1 yrs

3 yrs

3 yrs

Figure 6: Discovery reach for charged current NSI parameters corresponding to the MINOS best fit point

eq. (21) in MINOS (left), T2K (middle), and NOνA (right).

NSI effect manifests itself mainly as an apparent discrepancy between neutrino and anti-neutrino

results, while each data sample individually appears to be consistent with standard oscillations.

Thus, to optimally probe the non-standard effect, the event numbers in the νµ and ν̄µ samples

should not be too different. On the other hand, anti-neutrino cross sections are about a factor of

3 smaller than neutrino cross section, so more time has to be devoted to ν̄ running to achieve this

goal. Fig. 6 also shows that in order to improve the statistical significance of the anomalous effect

in MINOS itself, more anti-neutrino running is desirable since the experiment has already taken a

lot of data in neutrino mode. By comparing the three panels of fig. 6, we see that, as expected,

the discovery potential of T2K is better than that of MINOS, while the best sensitivity is achieved

in NOνA. After one year of nominal running in neutrino mode, NOνA could confirm the existence

of the non-standard effect at the 90% confidence level, while in anti-neutrino mode, even a few

months would be sufficient to achieve that sensitivity. This can be understood by noting that, for

the parameter values favored by MINOS, eq. (21), the two O(|�d
τµ|) NSI terms in eq. (16) have

opposite signs for neutrinos, but the same sign for anti-neutrinos. Therefore, the non-standard

effect is stronger for anti-neutrinos. To achieve a 3σ discovery in T2K or NOνA, neutrino and
anti-running are required, with at least one year spent in each mode for T2K, or half a year for

NOνA.

If the true values of the NSI parameters are different from the best fit point eq. (21), the

discovery reach in future experiments can be altered significantly. This is illustrated in fig. 7,

where we plot the χ2 of a standard oscillation fit to simulated data affected by CC NSI as a

function of the running time at nominal luminosity. The widths of the colored bands correspond

to the 1σ uncertainty in the NSI parameters from fig. 5. Fig. 7 shows that if nature has chosen

unfavorable NSI parameters, it will be very hard for T2K and NOνA to announce a discovery. On

the other hand, for favorable parameter values a 3σ effect could be detected after less than one

year of nominal running even in T2K.

5. DISCUSSION AND CONCLUSIONS

We have seen that, in order to explain the tension between the νµ and ν̄µ event samples in

MINOS using NSI, the NSI couplings would have to be rather large, almost of the same order

as Standard Model weak interactions. While we have shown in sec. 3 that there are regions of

parameter space still consistent with MINOS data and with constraints from other experiments,

one should keep in mind that the effective operators generating the NSI should ultimately arise
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from an underlying renormalizable model. Model-dependent constraints, however, are usually much
stronger than the model-independent bounds we have considered.

For example, the most straightforward implementations of dimension 6 NSI operators, based
on the introduction of new heavy tree-level mediator fields, are phenomenologically not viable
because SU(2) invariance would dictate that large neutrino NSI realized that way would have
to be accompanied by large non-standard effects in the charged lepton sector [20, 21]. There-
fore, such models are usually tightly constrained by rare decay searches [87]. NSI might arise
from dimension 8 operators involving two Standard Model Higgs fields contracted with lepton
doublets, so that after electroweak symmetry breaking, SU(2) breaking 4-fermion couplings can
arise. However, dimension 8 operators of this type are typically accompanied by phenomenologi-
cally problematic dimension 6 operators unless the coefficients of different operators obey certain
cancellation conditions [20]. Further model-dependent constraints on neutrino NSI operators can
come from electroweak precision tests such as muon g− 2 measurements, and from direct searches
for possible mediators. All these constraints will typically force the mediators to be heavy (at least
a few hundred GeV) or very weakly coupled.

The latter possibility—neutrino NSI mediated by light (� MW ), weakly coupled particles—is
less well explored in the literature, so a scenario of this type could be responsible for the effects seen
by MINOS. This is particularly interesting as models containing light new particles have recently
received a lot of attention in the context of Dark Matter searches (see e.g. refs. [92–97]).

In conclusion, we have shown that the tension between the νµ and ν̄µ disappearance data in
MINOS—if it persists—could be explained by non-standard neutrino interactions. While neutral
current interactions (non-standard matter effects) of the required magnitude are most likely ruled
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MINOS anomaly:

• Neutral Current NSI excluded by Atmospheric ν’s

• Charge Current NSI can explain the anomaly provide one can evade

SU(2)×U(1) gauge invariance. Explicit model needed!

• MINOS/T2K/NOvA... can directly constrain such CC NSI’s.
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