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Physics of LBNE

W Questions regarding the PMNS Matrix Elements
+:©13 Sensitivity +OcP Sensitivity  s<V=Mass Hierarchy

s:Resolving degeneracies

- Talk by Brajesh Choudhary
& Beyond PMNS

@23 =45007
+:CPT Violation 7
s:High Am**2 Oscillation ?

s:Phenomenon that defies the Zeitghist

® The familiar, beautiful neighborhood

#: Sin**2(Ow): precision commensurate with Colliders
+:Sum rules
s:Isospin Physics
s:Heavy neutrinos
BSeooeoeoes

s:Rewriting the V=text-book



Reinventing the Near Detector

4 Use of "identical” small detector at the near site is insufficient for future LBL
experiments:

o OV (E,,0,) different at Near & Far sites;
e Impossible to have “identical” detectors, for O(100kt), at the projected luminosities;
o Different compositions of event samples (v,,,v,,v., NC, CC)

— Coarse resolution dictated by O(100kt) and different flux at Near-vs-Far tell us
that the Identical Near Detector concept is insufficient

4 Need a high resolution detector at the Near-Site to measure systematics affecting the
Far-detector:

o V,,VU, V| |Ve|content vs. B, and 0,;

o v-induced 7 /K* /p/m® in CC and NC interactions; ¢= «— < V/(Bar)e/pi-Appearance
e Quantitative determination of E, absolute energy scale;
e Measurement of detailed event topologies in CC & NC.

— Provide an ‘Event-Generator’ measurement for LBLv

4 High Resolution near detectors at future LBL facilities are natural heirs to the
precision neutrino scattering programme

Can they achieve sufficient precision to complement the Colliders?

Sanjib R. Mishra
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Four Near-Detector Choices

& Liquid Argon (LAr) Detectors:
(2) 70-ton Unmagnetized LAr {MicroBOONE}
(b) 20-ton Magnetized LAr {UCLA-Gr}

® Fine Grain Trackers:
(i) Straw Tube Tracker {HiResMnu} ~ with H20
(ii) Scintillator Tracker {MINERvA} < Target

W Reference Design:
(2) 70-ton Unmagnetized LAr,
(i) Straw Tube Tracker {HiResMnu}



The Four Detector Options
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PHYSICS GOALS

4 Determination of the relative abundance, the energy spectrum, and the detailed
topology (complete hadronic multiplicity) of the four neutrino species in NulM|:

Vi, Ups |Ve | and | U | CC-interactions. &ppsolute v-Flux Measurement

4 An ‘Event-Generator Measurement’ for the LBLv experiments including single and
coherent w° (n) production, = /K= /p for the v.-appearance experiment, and a
quantitative determination of the neutrino-energy scale. &Background to Ve/Vyu

4 Measurement of the weak-mixing angle, sin“0y, with a precision of about 0.2%,
using independent measurements:
e v(V)-q (DIS),
o v(V)-e (NC).

Direct probe of the running of sin® 0y, within a single experiment.

4 Precise determination of the exclusive processes such as v quasi-elastic, resonance,
KY/A/D production, and of the nucleon structure functions.

4 Search for weakly interacting massive particles with electronic, muonic, and hadronic
decay modes with unprecedented sensitivity.



Scintillator Tracker

MINERvA tracking
and ECAL
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"RADIATOR"

STRAW LAYER

STRAW LAYER

........
......

Straw Tube Tracker

GLUE

STT MODULE

\

B=04T
Density = 0.1 g/cm3, 85% in the radiator foils.

Transition Radiation  »> Electron ID = y (w. Kinematics)

dE/dx »> Proton, 1, K ID
Magnet/Muon Detector »>
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Kinematics in HiResMnu

Pt-Vector Mez
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e Transition Radiation

Out of plane
Isurement

1 » “h”’=>Vector Sum of Tracks




A v, CC candidate in NOMAD




A v, CC candidate in NOMAD
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Figure 20: Distribution of y; for e (solid dots), pu~

(open dots), v,NC (big hatch) and CC

(small hatch) background after scaling. The combined (histo) = plus background agrees with

the distribution of e~ data. The bottom plot is the same as the top but includes kinematic
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Figure 19: Distribution of x;; for e~ (solid dots), p~

the distribution of e~ data. The bottom plot is the same as the top but includes kinematic

IR I

Sample

0.4
Xbj Xbj-0Bin-El

O T I S N N

0.4 0.6
Xbj-0Bin-El

42

(open dots), v,NC (big hatch) and CC
(small hatch) background after scaling. The combined (histo) p~ plus background agrees with



Resolutions in HiResMV

p = 0.lgm/cm”3
Space point position = 200

Time resolution = Ins

CC-Events Vertex: A(X,Y,Z) = O(100)
Energy in Downstream-ECAL = 6%/~E
U-Angle resolution (~5 GeV) = O(| mrad)

U-Energy resolution (~3 GeV) ~ 3.5%
e-Energy resolution (~3 GeV) ~ 3.5%

Relative resolution
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Requirements for the LBNE Fine-Grained Tracker

» Measure Vyu- & Ve-induced CC & NC interactions in 0.5SEv<20 GeV

#: T10 : Reconstruct with high purity & efficiency in V-induced CC & NC

(Largest background to Ve-appearance)

#TT+/- : Measure precisely in V-induced CC & NC

(Largest background to Vp-disappearance)

+: Y: Reconstruct with high purity & efficiency in V-induced CC & NC > "Dirt’-Events

(background to Ve-appearance)

s QE: Reconstruct with high purity & efficiency: Proton-reconstruction is the key
> A constraint on Flux & Ev-Scale

+: Distinguish V from Anti-Vp



Requirements for v /v, Appearance
Background Rejection

Main Backgrounds:

Intrinsic v./v, from muon & kaon decay
NC =0

NC vy

CCv,/v,

NC DIS

External Events ("Dirt” Events)

2 i\

We must be able to both measure & reject these
backgrounds! (The neutrino flux is not the same at
the near and far locations.)



Beamline Measurements: Neutrino fluxes,
neutrino beam monitoring

Absorber Muon
Cha berSMeasurements to constrain the AY ﬂuxes

* |n-situ measurement
— Particle fluxes extreme: > 108/cm?-spill
— High precision unlikely
Decay Region —  Currently, in-situ hadron measurements not
_— being pursued

e External measurements < WG4
— HARP (above t* production for MiniBooNE),

Target and Horn
System

MIPP, NA-61
"Bottom Line: | —  Used by K2K, MiniBooNE, T2K
» ~5% error on cross section HARP collaboration, Mak i<e had Jucti
> Resulted in ~10% error on flux hep-ex/0702024 — ake precise hadron production _
HARP Py =890V measurements of target and horn materials
o QOO — Input to simulations
b / I e j *  Muon measurements
T T — Threshold Cherenkov Detector
3 200 L I L I I .
& b ST 1=105 mac =135 mrad —  Michel Decay Detector
Target out @ e TR
subtraction € 00f
g
& 200 ] s .
s Measurements to monitor the v beam
ol *  Muon lonization Chambers
: S e Solid State Detectors
p.(GeV)

Christopher Mauger (LANL)



Flux: ... Always the Flux

insitu Absolute Flux

¥ lnverse Muon Decay: Vu + e->Ve + - { }

Elegant, Simple: but steep, though calculable, threshold Ev=11 GeV, Avg.Ev=25 GeV

Systematic Advantage of HiResMnu lies in avoiding the error that the CCFR or CHARM-II
incurred in extrapolating the background to the signal T=Pe(l-cosBe)=Cut

§iv-Electron Elastic Events: Vx + e-->Vx + e- { }

Focus on Vxe-NC: Experimentally the most challenging

#Using Collider measurements,
the Weak Mixing Angle (0.238) at Q~0.1 GeV, known to <1% precision

= O(Vxe-NC) known = Absolute-¢(VU+VU-Bar+ve+ve-Bar)-Flux
Note: 290% is VU

% Intercept of do/dQ**2 of Vu=-QE in D: Vu+ns>p-+p { }



Events

Absolute Flux using V-e Elastic Scattering

® Shape of Enu using (Ee, Oe):
& The precision on relative V-flux is worse than
in that determined using Low-V0 technique

150 B B . I I "]l 1 <Enu<4 => 1000 events
700kWV; 3Yr Nu-Run

w| HTH :

90 -

i 4 _
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E (GeV)




LOW-1y METHOD <Shape of Vu or Anti-Vu Flux

4 Relative flux vs. energy from low-1, method:
N(E, : Egap < °) = Co(B) f (%)

the correction factor f(V°/E,) — 1 for 1’ — 0.

= Need precise determination of the muon energy scale
and good resolution at low v values

4 Fit Near Detector v,,, 1, spectra:

e Trace secondaries through beam-elements, decay;

e Predict v,,v, flux by folding experiental acceptance;

o Compare predicted to measured spectra => x? minimization
d’o

depapz = [@r)g(Pr)h(er, Pr)

o Functional form constraint allows flux prediction close to E, ~ V.

4+ Add measurements of ¥/ K* ratios from hadro-production experiments to the
empirical fit of the neutrino spectra in the Near Detector

uscC




v., Low-Nu0 Fit, ND at 500m Relative V-Flux Measurement using LOow-V0 @ LBNE
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Systematic-Errors in Low-VO Relative Flux: Vu_& Anti-Vu

«Variation in VO-cut

«Variation in VO-correction
ssSystematic shift in Ehad-scale

«Vary 0(QE) £10%
«Vary O(Res) *10%
«Vary a(DIS) £10%
s:Vary functional-forms
ssSystematic shift in Emu-scale

s«sBeam-Transport (ND at 1000m)

Includes:
*Alignment (1.0mm)
*Horn Current (0.5%)
*Inert material (0.25\)

*Proton spot size
= Revisit these (?) & Investigate ND @ 500m



REDUNDANCY: v, & v,

4 Direct measurement of| v, AND v, | spectra in the Near Detector provides a

powerful cross-check of the flux predictions:
ve = pi(at =)0 K (—v,) ® K}
Ve = p (1 = 0) ©K (= 1p,) @ K]

4 In the NuMI beam v, and v, independent flux predictions:

n — Well constrained

Kt K-
K* — Need & MIPP

Tt o

K’ =— MIPP (NOMAD, HiResMuv)

STT: Ok, LAr NO, Scint. NO




REQUIREMENTS FROM EXTERNAL MEASUREMENTS

4+ We need the following external measurements from p-production experiments (e.g.
MIPP at Fermilab):

e K7 /n" as a function of P(2 < P <20 GeV) & Pp(<0.4 GeV) of K™ and w™
e K~ /n~ as a function of P(2 < P <20 GeV) & Pr(<0.4 GeV) of K~ and =~
o K"/K™ ratio

4 We need these measurements off:

e LBNE neutrino target;
e Thin/Thick Al, Cu, etc. targets that compose horn/beam-elements;
o Air (N)
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IDENTIFICATION OF v, CC INTERACTIONS

E
************* **************** N
SO — PURITY

Ve CC in HiResMv at LBNE
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4 The HiResMv detector can distinguish
electrons from positrons in STT

— Reconstruction of the e’s as
bending tracks NOT showers

4 Electron identification against charged
hadrons from both TR and dE/dx

—> TR 7 rejection of 1072 for e ~ 90%

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject non-prompt backgrounds
(7 in v, CC and NC)

—> On average ¢ = [88% and n = 99%
for v, CC at LBNE




Ve-CC Sensitivity HiResMv

s Leading Lepton ldentification (e-ID):
Eff(Ve-CC) = 61%
Purity = 96% (= 4% of selected events are non-Ve-CC: TT0-induced)

VU-CC reduced by 6*10%#(-5)
NC reduced by [07%(-3)

« Kinematic Isolation > reduce non-prompt (NC) background

VU-CC & NC reduced by an additional factor of 4
Eff(Ve-CC) = 55%

Purity =99% (= 1% of selected events are non-Ve-CC)

+« VeBar-CC Sensitivity:
If we keep the signal efficiency at =55%, then purity is about 95%



MEASUREMENT OF THE RATIO Reu <=Search/Impact of High-Am*#2 Oscillation

4 Independent analysis of neutrino data and anti-neutrino data due to possible
differences following MiniBooNE/LSND results

— Need a near detector which can identify e™ from e~

4 Measure the ratio between the observed v, (v.) CC events and the observed v,(v,,) CC
events as a function of L/ E,,:

#of VeN — e X

Re,u(EV) = # Of V,UJN N ,u_X (EV)
n  #Hof BN —etX
e (EV) — # Of P,UJN N M+X (EV)

4+ Compare the measured ratios R.,(  Ev ) and R.,( Ev ) with the predictions from the
low-vy flux determination assuming no oscillations <= Need External K+/Tt+ K-/TTo. KOL/K+

4 Same analysis technique used in NOMAD to search for v,, — v, oscillations.




At yesterday’s discussion:...

MiniBOONE Anti-Nu: Nu’l0
Summary and Outlook:

» The MiniBooNE v, and v, appearance picture starting to emerge is
the following:

1) Neutrino Mode:
a) E <475 MeV: An unexplained 3o electron-like excess.
b) E > 475 MeV: A two neutrino fit is inconsistent with LSND at the 90% CL.

2) Anti-neutrino Mode:

a) E <475 MeV: A small 1.30 electron-like excess.

> b) E > 475 MeV: An excess that is 3.0% consistent with null. Two neutrino
oscillation fits consistent with LSND at 99.4% CL relative to null.

» Clearly we need more statistics!
> MiniBooNE is running to double antineutrino data set for a total of ~10x1029 POT.

> If signal continues at current rate, statistical error will be ~40 and two neutrino
best fit will be >30.

» There are follow on experiments at FNAL

« uBoone has CD-1 approval. See talk by M. Soderberg
« BooNE (LOI). A MB-like near detector at 200 m. See poster by Geoff Mills.
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At yesterday’s discussion...

MiniBOONE Anti-Nu: Nu’l0
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Vu-QE Sensitivity

Example of a V-interaction in a high-resolution ND as a calibration of FD
Key is 2-Track (U, p) signature
Parametrized Calculation: Nomad data as Calibration

¥ Proton reconstruction: the critical issue
#dE/dx in but not used in the analysis
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Figure 15: A rv,,-QE candidate in NOMAD
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RECONSTRUCTION OF CC QUASI-ELASTIC INTERACTIONS

v, CC QE in HiResMv at LBNE

SR PURITY

| ‘4.5‘ - ‘5
Energy (GeV)

4 Protons easily identified by the large
dE/dx in STT & range

—> Minimal range to reconstruct p track
parameters 12cm = 250 MeV

4 Analize BOTH 2-track and 1-track
events to constrain FSI Fermi motion
and nuclear effects

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject DIS & Res backgrounds

— On average ¢ = 52% and n = 82%
for CC QE at LBNE
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Particle Multiplicity: V-induced Hardon-jet

“\Vu-CC identified by - in the FD
However in V-NC interactions:
= TI-/K-/D-hadron »+ - form an irreducible background

= -ve hadron punchthrough form additional, reducible background

% Anti-Vyp CC identified by p+ in the FD: Still higher backgrounds

“T110's in NC = Largest backgrounds to (Anti)Ve--appearance

5=30% of the Non-Prompt background (TT0+-/K0+-/D = |, EM-shower)

arise from “short” Vyu-cc

>> Measure (T10+-/K0+-/D = Y, EM-shower) in NC & in CC
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Reconstructed 7° in CC interactions in NOMAD
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(verall more than 100k reconstructed events. Three topologies:

® Cluster/Cluster 72k events

® Cluster/Conversion 22k events
~® Conversion/Conversion 7k events

South Carolina Group




Reconstructed i in NC interactions in NOMAD

6000 Clus/Clus | 1800 Clus/Conv Conv/Conv
i : 250
K 1400 - i
- - 200 —
4000 B 1200 L -
3000 1000 - 150
; 800
2000 600 100 ~
* 400 — -
1000 — - 50 |
I 200 — Hd LWV,
o _ T R ‘ 0 L T 1 : . L I R \A
0.1 0.2 0.3 01 . 0.2 03 9 o7 0.2 0.3
clus/clus y Pair Mass clus/v" y Pair Mass vA° v Pair Mass

Overall more than 33k reconstructed events. Three topologies:
® Cluster/Cluster 24k events

® Cluster/Conversion 7k events
® Conversion/Conversion 2k events

South Carolina Group




TT0-Reconstruction

® Clean TTO- and Y-signatures in STT

& v-NC & CC »+ TT0 »+ yy
~50% of the y »+ e+e- will convert in the STT,
away from the primary vertex.
We focus on these

Efficiency

& y-ldentification:
* e-/let ID: TR
* Kinematic cut: Mass, Opening angle

> At least one converted Y in STT

>Another Y in the
Downstream & Side ECAL

>
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&
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: 00 Eff
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Coherent-1m10 Candidates in NOMAD
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Y-Rec. in HiResMnu similar but much more efficient
Hermeticity of HiResMnu offers a powerful-veto against Dirt’-events



MEASURING NUCLEAR EFFECTS

% H?20 Target // D20 Target

4 Measure the A dependence (Ca, Cu, H;O, etc.) in
addition to the main C target in STT:

e Ratios of F5 AND xF5 on different nuclei;

e Comparisons with charged leptons.

4 Use 0.15X, thick target plates in front of three
straw modules (providing 6 space points) without
radiators. Nuclear targets upstream.

e For Ca target consider CaCQs or other compounds; <=

OPTION

: possible to install other materials (Pb, etc.).

A TARGET (0.15 X0)

4.0 cm

X times

South Carolina Group



MEASUREMENT OF sin” fyy FROM v-e

4 Ratio of ve — ve and ve — ve NC elastic scattering, V V
which Is free from hadronic uncertainties:

def  (p—e-) v Elastic
R Zof . Scattering
-’ off electron
Statistics available at LBNE with Project-X: hEN

e 8 x 103 NC events in v mode; e— e—
e 5 x 103 NC events in v mode.

4 Expected statistical uncertainty ~ 1.0%. Systematic uncertainties related to the
signal extraction reduced by v /v ratio and detector design:

e High resolution e tracking and charge measurement avoid background extrapolation (CHARM 1),

e Electron energy measurement cancel in the ratio.

Roberto Petti uscC




4 Use the LAr detector present in the ND complex in front of the fine-grained tracker.
The fiducial mass foreseen for the LAr is ~ 100 tons:

e Total of ~80 x 10° NC events in v mode;
e Total of ~50 x 10% NC events in 7 mode.

4 The optimal analysis uses a combination of| TWO DETECTORS

o HiResMuv provides a precise measurement of backgrounds (charge symmetric)
and an overall calibration for LAr;

o LAr provides the actual statistics for sin? Oy and a good electron identification.

4 Statistical uncertainty which can be reached on the ratio at the level of 0.3%

4 Evaluated the uncertainty on the v /v flux ratio using the low-vy method in the
neutrino beam mode (positive focusing)

o With current understanding of p/m /K nuclear collisions and beam elements systematic uncertainty
on theflux ratio of about 1%

o Overall improvement on the sin® 8y, only a factor ~ 1.4 for a total uncertainty of ~ 0.56%

STT: Ok, LAr Ok high bkg, Scint. Ok?




vinment of the events so reducing the usable statistics.

Measurement STT |Sci+uDet | LAr|{LArB|LArB+Sci+uDet |LAr4+STT
In Situ Flux Measurements for LBL:
ve —ve Yes No Yes| No No Yes
vue — [ Ve Yes Yes No | Yes Yes Yes
v,n — u pat Q7 =0 Yes Yes No | No Yes Yes
Low-1v9 method Yes Yes No | Yes Yes Yes
ve and v, CC Yes No No | Yes Yes Yes
Background Measurements for LBL:
NC cross sections Yes Yes No | Yes Yes Yes
7/~ in NC and CC Yes Yes Yes | Yes Yes Yes
u decays of nt, K+ Yes No No | Yes Yes Yes
(Semi)-Exclusive processes| Yes Yes Yes| Yes Yes Yes
Precision Measurements of Neutrino Interactions:
sin? 6w v N DIS Yes No No | No No Yes
sin? Ow ve Yes No Yes| No No Yes
As Yes Yes Yes| Yes Yes Yes
vMSM neutral leptons Yes Yes Yes| Yes Yes Yes
High Am? oscillations Yes No No | Yes Yes Yes
Adler sum rule Yes No No | No No Yes
D/(p+n) Yes No No | No No Yes
Nucleon structure Yes Yes Yes| Yes Yes Yes
Nuclear effects Yes Yes Yes| Yes Yes Yes

TABLE XXVIII: Summary of measurements that can be performed by different ND reference configurations.
Summary page from the Short-Baseline Physics Report: Roberto Petti



WSummary of Sensitivity Studies with LBNE-ND (HiResMnu, LA, ..-Idea)

a3 Determination of Absolute Flux:

Vu + e-#» Vpu + e- & Inverse Muon Decay

¢ Relative Flux:

Vu-Flux Shape: Far-Detector/Near-Detector (Ev)
VuBar-Flux Shape: Far-Detector/Near-Detector
VpuBar/Vu Flux

s Efficiency of Vu-QE CC and Background as a function of

ss Efficiency of Ve-CC and Background (TT0) from NC and CC

as a function of Ev [Ditto for VeBar-CC]

s TTO-detection efficiency and background as a function of ETTo

& Precision Studies with LBNE-ND (SBP Gr.: Roberto Petti)

85 Sin¥%*2(ow)
s Vp-Nucleon Elastic Scattering #> Del-S
s Vu-Energy scale: QE + Missing-Pt
s Search for Sterile V
s Search for High Del-m™*2 Oscillation

S5 eococee
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Vv,, Low-Nu0 Fit, ND at 1000m
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Status of v(7)-N Cross-Section

[ J NOMAD
0.95 — < MacFarlane ]8
N /AN Baker ~ 1. I T T
o I & Vovenko “ C CERNHLBC69 c H, 0 ANL 69, Fe - -
A oo 3 1.6/ o CERNGGM 77, CF B v IHEP 85, Al Vytn=i+p -
oss || . 7 e CERNGGM 79, C, H/CF Br & IHEP SKAT 90, CF,Br
= | SR T -
o L ‘ N i © 12 %ﬂ g i -
g 0.75 T [ _ 1 }7 — A 7
L7 Laef | ! I %H%%‘ L ]
il 0.7 ‘rf:"u X I - I I \ }71% 1
© 0677 O o I [ o B o [ B £ 8 e Y 4 ] R e 08* ) F¢*I -]
L | H i J > i E ;‘" %—L%J‘p—{ J :
0.6 ! g
0.4} %I—{ ]
i 02" .
0.5 L L L L e ‘0 . . ‘ L L SE— 1‘02 . 07 | | | N | | | | | Lo
( } E, (GeV) ] 10 P (G V)
(4
\Y
4 Inclusive v-N cross-section known to 2.6% for E,, > 10 GeV, and to 4% for E, > 2.5

GeV
—> Need precision data for E,, < 5.0 GeV (oscillation region)

4 Large uncertainties on exclusive processes: quasi-elastic (20%), resonance (40%) and
coherent production in CC and NC (50%)

4 Poorly known v cross-sections and v-induced processes

4 In HiResMv: Absolute flux mesurement (E, ~ 20 GeV) at 1% using Inverse Muon
Decay; Use QE and Low-1/" method to determine relative v, and v, flux

Sanjib R. Mishra UscC



QE

Quasi-Elastic Scattering

* new, modern measurements of QE o at these energies (on '2C)

<10~ 3
16 Fermi Gas with M,=1.35 GeV | | 3
£ 14 ‘l. Fermi Gas with M,=1.03 GeV | | .=
) - =
o 125 ’l»“ —— S
10;— + I —F T T T =
8 3 o  Discrepancy!?
6 - * MiniBooNE
4 * NOMAD  Eur.Phys.J.C63:355-381,2009
2 — SciBooNE
0 - " ERFG (~aV
10 1 10 E; ™ (GeV)
~ 30% difference between QE o P

measured at low & high E on 12C ?!



RELEVANCE OF THE sin® 6y MEASUREMENT

4+ Sensitivity expected from v scattering in HiResMv comparable to the Collider precision:

e FIRST single experiment to directly check the running of sin® @y :

elastic v-e scattering and vIN DIS have different scales
o different scale of momentum transfer with respect to LEP/SLD (off Z° pole)
o direct measurement of neutrino couplings to Z"

— Only other measurement LEP 1",

sin’0}, (Q)

0.242

E158

0.24

4 Independent cross-check of the NuTeV
sin? Oy, anomaly in a similar Q? range

0.238 |- |

Y nu—e¢

HiResMv DIS

0.236

— A discrepancy of 30 with respect
to SM in the NEUTRINQ data

0.232

PDG2004

L

1072 10~ 1 10 10°

10
Q (GeV)

South Carolina Group



Source of uncertainty | dX/X J6RY/R* OR”/R” 0X /X
Data statistics | 0.00593  0.00176  0.00393
Monte Carlo statistics | 0.00044  0.00015  0.00025
Total Statistics | 0.00593 0.00176 0.00393 0.0008
Ve, Ve flux (~ 1.7%) | 0.00171  0.00064  0.00109 0.0001
Energy measurement | 0.00079  0.00038 0.00059 0.0004
Shower length model | 0.00119  0.00054  0.00049 n.a.
Counter efficiency, noise | 0.00101  0.00036  0.00015 n.a.
Interaction vertex | 0.00132  0.00056  0.00042 n.a.
Other 0.0008
Experimental systematics | 0.00277 0.00112 0.00141 0.0010
d,s—c, s-sea | 0.00206  0.00227  0.00454 0.0011
Charm sea | 0.00044  0.00013  0.00010 n.a.
r=oc"/o” | 0.00097 0.00018  0.00064 0.0005
Radiative corrections | 0.00048  0.00013  0.00015 0.0001
Non-isoscalar target | 0.00022  0.00010  0.00010 N.A.
Higher twists | 0.00061  0.00031  0.00032 0.0003
Ry | 0.00141  0.00115  0.00249 || (Fs, Fr,zF3) 0.0005
Model systematics | 0.00281 0.00258 0.00523 0.0014
TOTAL | 0.00711 0.00332 0.00672 0.0019

Table 4: Summary of uncertainties on the extraction of the weak mixing angle (X = sin®fy,)
based upon the Pascos-Wolfenstein relation. The first three columns refer to the published
NuTeV errors [12] while the last column indicates the corresponding projection for our experi-

ment.



10— e -

©  NOMAD
.| = CCFR
i | o E53A+E538

PRESENTED AT DIS 2010 [ o et oo

GMMC/GCC
[

Statistical and
systematic uncertainties (< 2.5%)

X

-t

S
N

1.2

o
o)
O NOMAD N 1
10
=
)

© NOMAD

—*— Predict. for NOMAD

. | —— Predict. for NOMAD

........................................................................................

........ 0.8

0.6

0.4

...........................................................................................

0.2

O

------ 0 s
111 =1 1 | | 11 1 | 11 1 | 11 1 | 11 1 | 11 1 iIIIiIIIiIIIiIII

9 1 0 2 4 6 8 10 12 14 16 18 20

USsC
X, \'s (GeV/c?)




MEASUREMENT OF As

4| NCELASTIC SCATTERING | neutrino-nucleus is sensitive to the strange quark

contribution to nucleon spin, As, through axial-vector form factor G:

Ga

2

At Q* — 0 we have do/d(Q)* o< G% and the strange axial form factor G — As.

4 Measure| NC/CC RATIOS | as a function of ()* to reduce systematics (sin* Oy, as well):

__ _o(vp—vp) . __ _o(vp—vp)
Ry, = o(vn—p=p)’ Ry = o(vp—putn)
o Statistical precison in HiResMv will be at the 1073 level: ~ 1.5 x10° v NC and ~ 800k v NC events

e High resolution tracking for protons down to momenta of 250 MeV/c in HiResMv allows to
access low Q? values and reduce backgrounds;

e A precision measurement over an extended Q? range reduces systematic uncertainties from the Q>
dependence of vector (F} ) and axial (G*,) strange form factors;

o Nuclear effects are expected to largely cancel in the ratios R, and R;
e Need to check neutron background.

uscC



