Liquid Argon Detectors - Performance and Technical Challenges

Т

Brian Rebel October 2010

Outline

- Advantages of LAr Time Projection Chamber
- Current detectors ICARUS and ArgoNeuT
- Test stands for on-going R&D
- Outlook

- Incredible resolution in drift direction very important for distinguishing NC π^0 events from CC ν_e
- LAr TPC resolution: ~0.05 cm
- Important for cross-section measurements as well as oscillation parameters
- Low energy threshold $\langle dE/dx \rangle$ is 1.519 MeV cm²/g

e/γ Separation

4

- Top plot shows MIP deposition in first 2.4 cm of track for 250 MeV e/γ
- MC studies show one can achieve 90% electron ID efficiency at cost of 6.5% γ contamination
- Best technology for e/γ separation
- Distinguishing these processes is crucial for measurements of remaining mixing matrix parameters

Current Detectors

ICARUS

1 - High Voltage Feedthrough 2 - Cathodes 3 - Field Shaping Electrodes 4 - Voltage degraders 5 - Electron drift Directions 6 - Readout Wire Chambers 7 - Inner Liquid Argon Vessel 8 - Thermal Insulation Panels 9 - Signal Feedthrough Chimneys

- Largest LAr detector in the world
- Culmination of 20 years of effort - $50 L \rightarrow 3 t \rightarrow 300 t$
- Made of 2 modules, 300 t each
- Filled May 18, 2010

Energy Resolution

0/				
Low energy electrons	$\sigma(E)/E = 11\%/\sqrt{E + 2\%}$			
EM Showers	$\sigma(E)/E = 3\%/\sqrt{E}$			
Hadronic Showers	$\sigma(E)/E = 30\%/\sqrt{E}$			

Electron Lifetime in ICARUS

- Lifetime steadily increases in each cryostat with recirculation
- Equilibrium lifetime is 5.39 ms (West) and 2.73 ms (East)
- Recirculation time of 6.7 days (West) and 5.5 days (East)
- Difference due to different production of impurities in each module 7.2 ppt/day (West) and 20 ppt/day (East) O₂ equivalent

LNGS Neutrinos in ICARUS

Thursday, October 21, 2010

ArgoNeuT

- First LArTPC in a low energy neutrino beam - mostly R&D, but with some Physics thrown in
- Cryostat went into the MINOS hall in December 2008
- Filled with LAr May 8, 2009
- Ran through February, 2010

Cryostat Volume	500 Liters		
TPC Volume	175 Liters		
# Electronic Channels	480		
Wire Pitch	4 mm		
Electronics Style (Temperature)	JFET (293 K)		
Max. Drift Length (Time)	0.5m (330µs)		
Light Collection	None		

ArgoNeuT Data Taking in NuMI Beam

- Stable operation for nearly 5 months
- Unattended operation
- First low energy anti-neutrino events in LArTPC

Reaction	#events in AV ($\sim 1.35E20$ POT)
$\nu_{\mu} CC$	~ 6600
$\overline{\nu}_{\mu}$ CC	~ 4900
ν_{μ} CCQE	~ 600
$\nu_e \text{ CC}$	~ 130

ArgoNeuT Candidate $\nu_{\rm e}$ Interaction

Thursday, October 21, 2010

11

ArgoNeuT Particle Identification

Thursday, October 21, 2010

On Going Research & Development

Fermilab Materials Test Stand

- Major on-going challenge for LAr TPCs is ensuring purity of LAr
- 250 L capacity, vacuum-insulated, evacuable vessel
- Internal filter combines molecular sieve and activated copper, purifies liquid in situ
- Condenser allows closed system operation
- Airlock sits above cryostat, contains sample cage that can be lowered into the cryostat
- ICARUS style purity monitor used to determine electron lifetime

Conclusions from the MTS 15 300 Sample Temperature NIM A608:251-258 (2009) H2O Concentration ifetime (ms) or H20 Concentration (ppb) Drift Lifetime 250 12 Sample Temperature (K) Inserted Sample 200 150 100 50 4/11/09 12:00 4/12/09 12:00 4/14/09 12:00 4/15/09 12:00 4/13/09 12:00

- Direct relation between electron lifetime and H_2O concentration
- Water concentration in vapor space influenced by materials in vapor space
- No change in electron lifetime when materials are in liquid
- Condensed LAr should not be returned directly to the bulk liquid

Liquid Argon Purity Demonstrator

- Evacuable vessels scales the cost by at least a factor of 2 for small vessels, worse for large vessels
- Like to find an alternative to evacuation for large vessels
- Primary goal: show required electron lifetimes can be achieved without evacuation in an empty vessel - Phase I
- Will also monitor temperature gradients, concentrations of water, O₂
- Phase II will place TPC materials into the volume and show that the lifetime can still be achieved

LAPD Scalability Studies

- One goal of LAPD is to understand how to scale the cryogenics system up for a multi-kiloton scale detector
- Will do studies of
 - Oxygen concentration at various depths in the tank vs time during purge
 - Number of LAr volume exchanges needed to reach necessary lifetime for 2.5m drift
 - Rate of volume exchanges necessary to maintain lifetime
 - Filter capacity as a function of flow rate
 - Ability to recover from intentional contamination

Membrane Cryostat for Multi-Kiloton TPCs

- Membrane cryostat is attractive option for large LAr detector
- Makes effective use of space
- Liquid natural gas tankers have used the technology for decades with much larger volumes
- LBNE is working with industry to develop baseline design
- Minimal evacuation, a positive result from LAPD makes this an attractive option

Thursday, October 21, 2010

Large Electron Multipliers

	22 C		
total area	10×10 cm ²		
thickness	0.6, 1.0, 1.6 mm		
hole diameter	500 μm		
hole pitch	800 μm		
rim size	~50 µm		
segmentation	l 6 strips, 6 mm pitch		

A. Badertscher et al., NIM A 617, 188 (2010).

- On-going R&D into alternative readout technologies
- LEM offers opportunity for electron multiplication as ionization e⁻ are forced through the holes, S/N of 800/10 for dual phase operation
- Also potentially more mechanically robust than wire readout

Large Electron Multipliers

1. 1.	Anode .	2 mm	Strips		
	LEM 2	2 mm	1.6 mm	T T T T T T T T T T T T T T T T T T T	
	LEMI	~1 cm	1.6 mm	and the second	
	Extraction Grids	~1 cm	LAr level		
			5 mm		
			Field Shapers		
	Cathode (Grid) Ground (Grid) PMT	< 30 cm			
Company of the second se		Δ	Radertscher et al	NIM A 617 18	18 (2010

- On-going R&D into alternative readout technologies
- LEM offers opportunity for electron multiplication as ionization e⁻ are forced through the holes, S/N of 800/10 for dual phase operation
- Also potentially more mechanically robust than wire readout

Test Beam Operation at KEK

- 250L LArTPC to go into KI.IBR beam @ KEK to study K+ response relevant to proton decay studies
- Also larger scale test of dual phase readout LEMs 0.4 m x 0.8 m
- Scheduled to go into test beam in October 2010

- Plots show sensitivity to detection of non-zero θ_{13}
- LAr offers more than order of magnitude improvements in sensitivity compared to NOvA
- Increased mass only accounts for a factor of 3 improvement in these plots, better background rejection is main reason for improvement

• Plots show sensitivity to detection of non-zero θ_{13}

- A LArTPC offers somewhat better sensitivity than a Water Cherenkov detector with 6x the mass
- Main advantage is due to LArTPC's increased resolution resulting in better background rejection

Outlook

- ICARUS is running and observing LNGS neutrinos
- ArgoNeuT analysis is beginning, particle identification for proton vs μ/π results are promising
- Many test stands are pushing the technology towards a kiloton scale detector
 - Fermilab MTS provides mechanism for determining which materials should go into LArTPCs, also shown that H₂O is most worrisome contamination
 - LAPD testing whether non-evacuable vessels are viable cryostats
 - "New" membrane cryostat option being explored for LBNE
 - LEMs are possible new readout technology, provide gain and improved S/N
 - 250L TPC starting operation in KEK test beam
- Sensitivity of LArTPC rivals much larger WC detector

50kt LAr Vs Water Cherenkov

- Sensitivity to detection of CP violating phase, δ
- NOvA will not be able to measure δ

50kt LAr Vs Water Cherenkov

- Sensitivity to discrimination of mass hierarchy
- NOvA's reach is about a factor of 5 worse

Thursday, October 21, 2010

LAr TPCs

- Electric field established between cathode and readout planes
- Field strength typically 500 V/cm
- Minimum ionizing particle releases 55k e/ cm
- Electrons drift toward readout planes with velocity of 0.155 cm/µs - need > 1.6 ms for 2.5 m drift
- (dE/dx) for minimum ionizing particle is
 1.519 MeV cm²/g
- Attractive detector design for large detectors as channel count goes as fraction of the area rather than volume
- Primary challenge keeping LAr pure over long drift distances

Why Argon?

/ 0							
	Water	-6	Ne	Ar	Kr	Xe	
Boiling Point [K] @ Iatm	373	4.2	27.1	87.3	120.0	165.0	
Density [g/cm³]	1	0.125	1.2	1.4	2.4	3.0	
Radiation Length [cm]	36.1	755.2	24.0	14.0	4.9	2.8	
Scintillation [γ/MeV]	-	19,000	30,000	40,000	25,000	42,000	
dE/dx [MeV/cm]	1.9		1.4	2.1	3.0	3.8	
Scintillation λ [nm]	475	80	78	128	150	175	

- Cheap and easy to obtain 1% of atmosphere, \$1 / L (cheaper than Pepsi)
- Relatively high boiling point
- Produces lots of scintillation light as well as ionization
- Transparent to own scintillation, useful for triggering
- Good liquid for having large electric field running through it

R&D Test Stand

- Goals are to develop purification techniques and qualify materials that are intended for use in LArTPCs
- Commercial LAr passes through molecular sieve to remove water then activated copper to remove oxygen₂₈

- Initially, operation of the condenser caused electron lifetime to drop
- Condensed liquid rained directly into the bulk liquid
- Several tests through various return paths showed that increasing cold metal surface area on return to liquid improved lifetime
- Hypothesis: impurity desorbs from warm surfaces, gets mixed into liquid in condenser
- Depending on return path, impurity can adsorb to cold metal on return to liquid and be removed
 29

Phase I - Purification without Evacuation

- Basic idea is to use an argon piston for initial purification
- Cycle a few volumes of clean, warm Ar gas through the volume to push out ambient air and dry out surfaces
- Then recirculate the gas through filter system to achieve < 50 ppm contamination

Phase I - Purification without Evacuation

- Basic idea is to use an argon piston for initial purification
- Cycle a few volumes of clean, warm Ar gas through the volume to push out ambient air and dry out surfaces
- Then recirculate the gas through filter system to achieve < 50 ppm contamination

What is the Impurity? 10 H2O Concentration Lifetime (ms) or H20 Concentration (ppb) Electron Lifetime Opened Closed Airlock Airlock 4/3/09 0:00 4/4/09 0:00 4/5/09 0:00 4/6/09 0:00

- Source must be something that remains on metal surfaces in vacuum and has an affinity for cold surfaces: Water is a clear suspect
- Moisture analyzer with 2 ppb detection limit used to monitor water concentration in cryostat
- Water concentration increases when airlock is open to cryostat, electron lifetime decreases

Number of Gas Volume Exchanges

 Study by T.Tope at FNAL shows it takes 2.6 volume exchanges to reduce contaminants to 100 ppm

ArgoNeuT Reconstruction

The Next Steps

- The ultimate goal is to make LAr a viable option for massive detectors
- Very large detectors needed for next generation neutrino oscillation experiments and proton decay
- Oscillation experiment will be a major component of DUSEL
- Baseline of 1300 km
- Will allow us to measure CP violation in the neutrino sector, see 1st and 2nd oscillation maxima

Thursday, October 21, 2010

Membrane Cryostat

- Stainless steel primary membrane
- **2** Plywood board
- B Reinforced polyurethane foam
- **4** Secondary barrier
- S Reinforced polyurethane foam
- 6 Plywood board
- Bearing mastic
- 8 Concrete covered with moisture barrier