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Long-Baseline Neutrino Experiment
Science collaboration is made up of 279 members from 
57 institutions

Experiment will consist of
- neutrino beam and near detector complex located at 
Fermilab
- far detector (water Cherenkov and/or liquid argon)* 
located at the DUSEL facility in South Dakota (1300 km 
baseline)

Earlier talk by B. Choudhary on LBNE status

*No decision has been made on far detector technology. 
3 options: water Cherenkov, liquid argon, or one of each
This talk assumes water Cherenkov option
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Water Cherenkov Detectors
Image Cherenkov rings produced 
by charged particles traveling 
through water

Suitable for a wide range of 
physics topics: low (MeV-scale) 
and high (GeV-scale) energy

Key detector parameters:
- Size
- Light collection (PMT QE, 
photocathode coverage, 
attenuation length)

Technology is well-understood

SuperK
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LBNE WC Detector Requirements
1) At least 200 ktons of mass

2) Multiple modules:  
- Detector dimensions limited by cavern engineering, 
PMT pressure performance, and light attenuation.
- Allows 100% live time.

2) Depth > 1000 m.w.e. for long-baseline physics 
(>4000 m.w.e. for low-energy physics)

3) PMT coverage sufficient for reconstruction and 
particle identification; greater coverage enhances 
low-energy physics

4) Water purification to maintain transparency
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LBNE Water Cherenkov Design

2 x 100 kton modules

Each module:
● Total water mass of 
138 ktons
● Fiducial mass of 
100 ktons
● ~50,000 10” PMTs 
(~20% coverage)
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Water Cherenkov Detectors

PDG, J. Phys. G 37, 075021 (2010) 

Detector Fiducial Mass 
(ktons)

# PMTs 
(diameter, cm)

Coverage 
(%)

pe/MeV Dates

IMB-1 3.3 2048 (12.5) 1 0.25 1982-1985

IMB-2 3.3 2048 (20) 4.5 1.1 1987-1990

Kam-I 0.88/0.78 1000/948 (50) 20 3.4 1986-1990

Kam-II 1.04 948 (50) 20 3.4 1993-1998

SK-I 22.5 11146 (50) 39 6 1996-2001

SK-II 22.5 5182 (50) 19 3 2002-2005

SK-III 22.5 11129 (50) 39 6 2006-?

SNO 1 D
2
0 / 1.7 H

2
0 9438 (20) 54 9 1999-2006

LBNE 100 50000 (25) 20 3 Future
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Water Cherenkov Detectors

Detector Fiducial Mass 
(ktons)

# PMTs 
(diameter, cm)

Coverage 
(%)

pe/MeV Dates

IMB-1 3.3 2048 (12.5) 1 0.25 1982-1985

IMB-2 3.3 2048 (20) 4.5 1.1 1987-1990

Kam-I 0.88/0.78 1000/948 (50) 20 3.4 1986-1990

Kam-II 1.04 948 (50) 20 3.4 1993-1998

SK-I 22.5 11146 (50) 39 6 1996-2001

SK-II 22.5 5182 (50) 19 3 2002-2005

SK-III 22.5 11129 (50) 39 6 2006-?

SNO 1 D
2
0 / 1.7 H

2
0 9438 (20) 54 9 1999-2006

LBNE (1 
module)

100 50000 (25) 20 3 Future
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PMT Coverage

SK-II

SK-I

SNO

Relationship 
between 
threshold and 
PMT 
coverage

Background 
rate will also 
affect the 
threshold
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Depth Requirement

4850' (4290 mwe) level is 
deep enough for all physics 
goals

Cosmic rate at 4850' is ~0.1 
Hz per 100 kton module

Long-baseline physics:
Expect ~10000 CC 
events/year/100 kton

Need >1000 m.w.e so that 
beam signal rate is 
comparable to cosmic rate
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4850' Level
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PMT Requirements

● Quantum efficiency > 20%
● Wavelength range 300 to 600 nm
● TTS ~3.2ns
● Afterpulsing <5%, prepulsing<1%
● Charge resolution 50%
● Gain 107 at <2000 V
● Dark rate 2500 Hz at 13 C
● Low flashing rate
● Long term stability, electrically and mechanically 
up to 20 years
● Pressure resistance up to 0.7 MPa  (floor of 
detector is ~0.6 MPa)
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PMTs under study

Baseline choice
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PMT Support Structure



14L. Whitehead, BNL October 22, 2010

PMT Failure

Understand 
individual PMT 
response to 
pressure:
Testing in a 
dedicated pressure 
vessel at BNL 
instrumented with 
pressure sensors 
and a fast motion 
camera

Initial testing at BNL:
Pressure raised in 
small increments 
until the bulb failed

M. Diwan
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PMT Failure
Prevent a single PMT implosion 
from inducing failure in other PMTs

Study shock wave, eventually test 
an entire PMT module 

Propulsion Noise 
Test Facility

Navy facility in RI: 
- 15 m diameter vessel
- 500,000 gallon capacity
- can reach 6.9 bar (bottom 
of detector is ~6 bar)
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Water System

Requirements:
- atten. length>80 m
- Water temperature 13C

100 days to fill one 
module

20-25 days to circulate 
entire volume
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Event Rates

Physics Rate/100kton/yr Energy Range
Beam 10000 CC (w/osc) 0.5-10 GeV
Supernova @10 kpc 20000 (10 sec) >5 MeV
Relic Supernova 1-13 10-30 MeV

Atmospheric 10000 1-100 GeV

Solar  15000 >7 MeV
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Gadolinium Option

e p e+nDissolving Gd in the water 
enhances detection of relic 
supernova neutrinos:

8 MeV gamma cascade from 
n capture on Gd greatly 
improves background 
rejection

NOT part of the baseline 
design, but keeping the option 
open

Gd in SuperK:
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Performance Requirements

Largely based on SuperK performance – 
these goals are modest!

 LBNE WC simulations are in progress and 
being validated against SuperK simulation

● Vertex resolution 30 cm for single ring 
events
● Angular resolution 1.5o-3o over an energy 
range from 100 MeV to several GeV
● Energy resolution for single muons and 
electrons should be much better than 
4.5%/sqrt(E)
● e/ separation
● Recognize two rings with >90% efficiency 
when the opening angle is >20o



e
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
e
 appearance

Signal and background efficiencies based on SuperK simulation and 
reconstruction

Uses a specialized fitter to identify 0 backgrounds

Total signal efficiency is 16% (28%) at 2 (0.8) GeV

Proof of principle, has not yet been optimized for LBNE

Select single ring, e-
like events

Assume CCQE for 
reco energy:
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
e
 spectrum
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
e
 spectrum
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
e
 appearance


13

 Sensitivity Mass Hierarchy Sensitivity
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
e
 appearance

CP Sensitivity
CP 1 resolution

200 ktons x 10 years
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Timescale

Production of 100,000 PMTs: ~5 years

Cavity excavation: ~2-3 yrs per cavity

Detector construction: ~2 yrs per module

Start of DUSEL construction ~2014
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Summary

- Design of water Cherenkov detector for LBNE is 
progressing

- In the current design, each water Cherenkov 
module is 100 ktons (fiducial mass), with 50000 10” 
PMTs, located at the 4850' level in Homestake

- PMT studies, including pressure tolerance, are 
ongoing

- Performance requirements for beam neutrino 
oscillations and other physics are well-understood 
thanks to SuperK 
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