The Main Injector Particle Production (MIPP) Experiment

Sanjib R. Mishra, University of South Carolina

on behalf of the MIPP Collaboration

{Poster by Ms.Sonam Mahajan from the Indo-US V-Collaboration}

The Measure High-Statistics, Unbiased, Particle Production Cross-sections in Hadron-Nucleus Collision

Beam Projectile: (anti)Proton, π +, π -, K+, K-

Beam Energy: $O(1) \leq PBeam \leq 90$; 120 GeV Proton

Target: $I \leq A \leq 238$ (H/Be/C/Al/Bi/Pb/..); NuMI/LBNE-Target (C); Thin & Thick

Particle-ID: TPC(dE/dx); ToF; Cerenkov; RICH; Calorimeter

Physics of MIPP

Neutrino Flux
 π+, π-, K+, K-, K0L yields (XF, PT) in Proton(π+-, K+-)-Nucleus Collision
 Accelerator Neutrinos {primary target & beam-elements}

 \Rightarrow Atmospheric Neutrinos {N, O?}

Transformation Service Measurements

▲Hadron Shower Simulation (MARS, Geant4, Fluka, ..) \Rightarrow Calorimetry

Proton Radiography

Tricle Physics

Non-perturbative QCD; Baryon Resonances; Meson Sepectroscopy
 Fragmentation-rules in (semi)Inclusive Processes
 Precision measurement of K+ (NIM A631)

Nuclear Physics

Strangeness Strangeness Flavor Propagation Scaling

The MIPP experiment

- Approved in November 2001, installed in Meson Center MC7, 14 months physics run ended in February 2006 – 18 million events
- Use 120 GeV/c Main Injector protons to produce
 - secondary beams of π^{\pm} , K^{\pm} , and p , \overline{p} from 5 GeV/c to 90 GeV/c
 - 120 GeV/c proton beam for NuMI and nuclear targets (A=1 to A=238)
- Measure particle production cross sections on fixed targets
 various nuclei including hydrogen and the NuMI target
- Momenta of ~all charged particles measured with TPC and tracking chambers.
- Particle identification with dE/dx, ToF, multicell Cherenkov, and RICH detectors and calorimeter for neutrons.
- Open Geometry Lower systematics than single arm spectrometers
- A proposal FNAL-P960 to upgrade MIPP was deferred until publications

MIPP

The MIPP detector

The MIPP beam

- MIPP design, very short from primary to secondary target (95 m)
- Excellent performance, kaons down to 3 GeV/c (in upgrade), enough kaons survive.
- Ran it successfully in MIPP from 5-85 GeV/c secondaries and 120 GeV/c primary protons.
- Excellent particle ID capabilities using 2 Beam Cherenkovs. For low momenta (<~10 GeV/c) Beam-ToF is also used for pid.
- Design principles and lessons learned used in M-test at Fermilab.

Cryogenic target mounted in TPC, NuMI target and target wheel

MIPP

empty

HM 11/28/2005

Reconstructed p-C 120GeV/c event MIPP

Vertex reconstruction

- Two steps to vertexing:
 - Vertex finding is done with iterative algorithm.
 - All tracks of each vertex are refit with the constraint of originating at the vertex.
 Uses track templates.
- Vertex resolution:
 - 6mm vertex Z resolution
 - X,Y resolution < 1mm
- Good separation of target
 interactions from background

dE/dx in the TPC - data

TOF particle ID

• TOF did not work as well as designed, but gives good PID over most of the momentum region it was supposed to cover after all corrections are applied carefully.

Cherenkov particle ID

- Every mirror calibrated with data assuming pions and Poisson statistics.
 - Light yield lower than expected.
 - Normalized to $\beta=1$ to put all mirrors in same plot
 - NuMI target data and MC shown here

RICH particle id

- From Selex, entirely new readout electronics and some PMTs replaced
- Radiator: CO₂ gas at STP
- Gives lots of hits for MIPP
 momentum range.
 - easy to fit good circles
- RICH ring radius gives very good
 particle ID
 - $e/\mu/\pi$ up to 12 GeV/c
 - π/K/p to 120 GeV/c

RICH ring radius for positives

Calorimeters

- EM calorimeter followed by hadronic calorimeter
- NIM A598 (2009) 394-399

$$\frac{\sigma}{E} = \frac{0.554}{\sqrt{E}} \oplus 0.026$$

Momentum resolution compared to HARP at CERN

- MIPP momentum resolution is excellent
 - TPC with JGG field at low momenta
 - Rosie magnet and Drift Chambers at higher momenta
 - Redundancy
 - 128 TPC hits
 - 24 wire chamber planes

Detector acceptance

MIPP-I Acceptances MIPP-II will have backward acceptances.

Detector acceptance

- Pions at low $x_{_{\rm F}}$ move backward in the lab

• Plastic Ball detector in the upgrade will increase acceptance.

MIPP Data set

MIPP Results

Published Articles
 K+ Mass: NIM A631, Mar/10
 Calorimetry: NIM A598, Jan/09

Advanced Analyses
 NuMI Target Particle Yields
 Forward Neutron Production Cross-Section

a In works

Lot more cross-sections, Nuclear Physics
 Physicists and Students in Indo-US collaboration

A Ph.D. Theses

▲Five Ph.D's awarded ▲3-4 in progress

The NuMI target measurement

- NuMI analysis goal:
 - provide particle spectra from direct measurement to reduce systematic uncertainty in ND/FD ratio of neutrino spectra.

Global PID

4-Hypotheses for Each charged track: e π K P

JD: dE/dx ToF Ckov Rich Cal

Max LH fit for each hypothesis; iterate

Separation of Electrons and Pions in MIPP – $p_{_{+}}^2$ as a discriminant

- There is some distinction between electrons and pions in the TPC dE/dx and in the RICH below the pion threshold at 4.6 GeV/c. Pretty much everywhere else they are indistinguishable since they are both β~1 particles.
- However, electrons arise from π⁰ which decay to two photons which then convert again. At each stage the average p_t of the final state particle is lowered by ~ a factor of two. So for any given momentum an electron will have approximately a factor 4 less p_t than a charged pion. Verified in data and MC. Use p_t² likelihood as an added discriminant R. Raja, MIPP-Doc 993

NuMI target analyzed by GlobalPid

NuMI target analyzed by GlobalPid MIPP

- Further work to be completed
 - Tweak various algorithms
 - As p_t increases, we lose acceptance. This results in a dilution of analysis power of algorithm. P_t dependence has to be studied before we make detailed MC data comparisons.
 - Estimate systematic errors
 - Do momentum smearing corrections
 - Minority particles (K, p-bar) after further study

Forward Neutron Production

* What we measure: $p + A \Rightarrow n + X$ [n \implies Excess energy in Cal]

* Beam Energy: 20, 58, 84, & 120 GeV

* Targets: H, Be, C, Bi, U

Cross-Checks: Use known p-p cross-section to check
 →Beam Flux → Reconstruction → Acceptance

* Acceptance: MC Estimations [Large differences]

Neutron cross sections some cross section results

Neutron cross sections invariant cross section scaling

- Scaling of the Lorentz invariant cross section
 - Observed for p+p
 - Not observed for p+A

Neutron cross sections Results as a function of A

Neutron cross sections Results as a function of A

MIPP Upgrade

$\overset{\text{\tiny{$^{\circ}$}}}{\longrightarrow} \text{Proposed Data}$

Nuclear Targets:

H, D, Li, Be, B, C, N, O, Mg, AI, Si, P, S, Ar, K, Ca, Fe, Ni, Cu, Zn, Nb, Ag, Sn, W, Pt, Au, Hg, Pb, Bi, U
 Thick & Thin targets

Targets for NuMI, LBNE, V-Factory & elements used in V beam-line

Solve the Hadron Shower Simulation problem \Rightarrow Constraint on V-Flux

Baryon Resonance, Scaling,

Nuclear Physics

QE

Quasi-Elastic Scattering

• new, modern measurements of QE σ at these energies (on 12C)

Flux: ... Always the Flux

 $\sigma(vN) \Rightarrow Absolute-\phi(v)$ -Flux // Poorer precision in $\sigma(anti-vN)$

• MIPP is not a `be-all/end-all' for $\phi(v)$ • MIPP will provide an invaluable constraint, currently missing, on the flux

MIPP Upgrade ...cont.

The sector Upgrade {Most elements from 1990's}

STPC Readout upgrade: 30 Hz → 3000 Hz {Chips delivered}

JGG Coil Replacement: Done

«Recoil Detector: DGSI Plastic-Ball {wide angle p, n, γ}

Beam Veto Wall: Assembled at FNAL {Sadler et al.}

BDC/Ckov/ToF/Calo Readout: Prototypes built {Compatible with 3kHz rate}

Tagged Neutral Beam {n, KOL}

New Institutions have joined the proposal
 Indian Physicists in the Indo-US V-Collaboration

Cost of the Upgrade: \$2M {\$0.5M spent} Backup Slides

Beam Cherenkov Pressure Curve

• Two differential Ckovs separate π/K or K/p depending on N₂ radiator pressure

MIPP TPC – Reconstructed tracks

Global PID

4-Hypotheses for Each charged track: e π K P
 ID: dE/dx ToF Ckov Rich Cal
 Max LH fit for each hypothesis; iterate