From Neutrino Factory to Muon Collider

Daniel M. Kaplan

ILLINOIS INSTITUTE OF TECHNOLOGY

Transforming Lives. Inventing the Future. www.iit.edu

NuFact'10 Tata Institute of Fundamental Research Mumbai, India 20–25 October 2010

Outline

- Neutrino Factory/Muon Collider Comparison
- Muon cooling for a Neutrino Factory or Muon Collider
- 6D cooling
- Final cooling
- Acceleration
- Storage ring
- Conclusions

µC-vF Comparison

• Front ends similar or identical!

e

ILLINOIS IN

OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu ŴÌČE

IIT

Can µC be built as vF upgrade?

Key µC Parameters

Table 2. Example parameters for a 1.5 TeV (c.m.) muon collider [26].

	LEMC	HEMC
Avg. luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	2.7	1
Avg. bending field (T)	10	8
Proton driver repetition rate (Hz)	65	15
β^* (cm)	0.5	1
Muons per bunch (10^{11})	1	20
Muon bunches in collider (each sign)	10	1
Norm. Transv. Emittance (µm)	2.1	25
Norm. Long. Emittance (m)	0.35	0.07
Energy spread (%)	1	0.1

• 2 ways to get 10³⁴

compare with vF:

7,400 Need ~300X more cooling than vF!

How to get there:
 (I scenario)

 Must cool both transversely and longitudinally

Ionization Cooling

Reminder: Muons cool via dE/dx in low-Z medium:

Ionization Cooling

<u>Note</u>:

- *dE/dx* cooling mechanism inherently transverse
 - reduces p_x , p_y , p_z while acceleration replaces only p_z
 - \Rightarrow cools only beam divergence
 - coupled to beam area by variable focusing
 - \rightarrow 4D transverse cooling
- Demonstration in progress (MICE), 2013 goal...

MICE

 Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory

 Beamline working, apparatus buildup in progress

IIТ

- see WG3 parallel talks by Torun, Apollonio, Rayner

How to cool in 6D?

- Work above ionization minimum to get negative feedback in p_z?
- No ineffective due to straggling

 \Rightarrow cool longitudinally via emittance exchange:

How to cool in 6D?

Approacher icky beam dynamics: must handle dispersion, diting due angularalmomentum, nonlinearity, chromaticity, & finite dE acoptant-isochronous beam transport

er (could also help for NF) g ring & spirater lices ekplorgears of work, 3 solutions seem viable:

Y. Alexahin, FNAL

The formation of the fo

Helical Cooling Channel

iting due to longitudinal-emittance

finite dE acceptance of cooling charged to the cool in 6D?

er (could also help for NF)

g ring & solutions seem viable:

- FOFO Snake can cool both signs at once but may be limited in $\beta_{\perp,min} \Rightarrow$ may be best for initial 6D cooling
- HCC may be most compact
- Not yet clear if all will work in practice, nor which is most cost-effective
 NuFact'10, TIFR, Mumbai, 24 Oct. 2010

How to cool in 6D?

Guggenheim simulation results shown here

Ist 6D cooling test:

- Some aspects of 6D cooling can be tested by inserting wedges in MICE
- Part of MICE program
 - have ordered LiH wedge:

Beyond 6D Cooling

- To reach ≤25 µm emittance, must go beyond
 6D cooling schemes shown above
- One approach (Palmer "Final Cooling"):
 - cool transversely in ~40 T B field at low momentum
 - gives lower β & higher dE/dx:

$$\beta_{\perp} \sim \frac{p}{B}$$

 Lower-B options under study as well (Derbenev "PIC/REmEx," lithium lenses)

Acceleration

IDS-NF

2.6-25 GeV FFAG

Linac to

0.9 GeV

0.9-3.6 GeV

RLA

3.6-12.6 GeV RLA

• Initial linac

- Finally, rapid-cycling synchrotrons (RCS)
- Last RCS uses hybrid 8T SC and -1.8 to +1.8 T pulsed dipoles

Collider Ring

• Example 2.5 km storage ring for $\sqrt{s} = 1.5$ TeV:

ILLINOIS IN OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu

Collider Ring

• Example 2.5 km storage ring for $\sqrt{s} = 1.5$ TeV:

- Employs open-midplane dipoles (8 & 10 T) in order to cope with decay electrons
- Will continue to be refined

IIT

Conclusions

- A high- \mathcal{L} Muon Collider is probably feasible, and buildable as a Neutrino Factory upgrade
 - whether things go in this order remains to be seen!
- Requires development of high-field HTS solenoids
- Technology selection, feasibility demonstration, and cost estimation are main goals of MAP 7year program

Acknowledgments

 My thanks and congratulations to Naba and the organizing committee for an exciting, memorable, and smoothly run workshop!

