MEG Experiment - New Result & Prospects -

State of the local division of

Hajime NISHIGUCHI, KEK on behalf of MEG Collaboration

NuFact10, 20-25 Oct. 2010, Tata Fundamental Research Institute, Mumbai

Introduction - Lepton Flavour Violating Muon Decay -

Lepton Flavour Violating " $\mu \rightarrow e\gamma$ "

- * Lepton Flavour Violating muon decay --- " $\mu \rightarrow e\gamma$ " ---
 - * $\mu \rightarrow e\nu\nu \sim 100\%$ (normal muon decay in SM, Michel decay)
 - * $\mu \rightarrow e\gamma$ violates Lepton Flavour Conservation
 - * Even if we assume "SM" + "Neutrino-Oscillation", $\mathcal{B}(\mu \rightarrow e\gamma)$ is calculated to be < 10⁻⁵⁰
 - * Many models of beyond SM, however, predicts large, achievable $\mathcal{B}(\mu \rightarrow e\gamma) \sim 10^{-15 \sim -11}$

 Present experimental Upper Limit on <u>B is 1.2×10⁻¹¹(90CL.)</u> (MEGA experiment, 1999)
 cf. PRL. 83 (1999) 1521

Hunting for $\mu \rightarrow e\gamma$

Signal and Backgrounds

- * Clear 2-body kinematics ($E_e = E_\gamma = 52.8 \text{MeV}$, $\theta_{e\gamma} = 180^\circ$, Time Coincidence)
- * Sensitivity is Limited by "Accidental Overlap"
 - * DC muon is the Best Solution
 - * Good Resolution (Energy, Spacial and Timing) under Very High Rate

Long History of " $\mu \rightarrow e\gamma$ " Search

- * "µ→eγ" Search
 Experiment has started
 right after µ discovery
 - Very Long Tradition
- Now we are approaching the predicted region

Long History of " $\mu \rightarrow e\gamma$ " Search

- * "µ→eγ" Search
 Experiment has started
 right after µ discovery
 - Very Long Tradition
- Now we are approaching the predicted region

- * Sensitivity is Limited by "Accidental Overlap"
 - * DC muon is the Best Solution
 - * Good Resolution (Energy, Spacial and Timing) under Very High Rate

- * Sensitivity is Limited by "Accidental Overlap"
 - * DC muon is the Best Solution
 - * Good Resolution (Energy, Spacial and Timing) under Very High Rate

World Most Intense DC Muon Beam at PSI 10⁸ muon/sec

- * Sensitivity is Limited by "Accidental Overlap"
 - * DC muon is the Best Solution
 - * Good Resolution (Energy, Spacial and Timing) under Very High Rate

World Most Intense DC Muon Beam at PSI 10⁸ muon/sec

Liquid Xenon Scintillation Detector (gamma)

Hajime NISHIGUCHI (*KEK*)

"MEG Experiment"

- Sensitivity is Limited by "Accidental Overlap"
 - * DC muon is the Best Solution
 - * Good Resolution (Energy, Spacial and Timing) under Very High Rate

World Most Intense DC Muon Beam at PSI 10⁸ muon/sec

Liquid Xenon Scintillation Detector (gamma)

COBRA Spectrometer (positron)

Hajime NISHIGUCHI (KEK)

"MEG Experiment"

MEG Detector Apparatus

MEG Detector Apparatus

Liquid Xenon Scintillation Detector

- Homogeneous Volume (~800*l*) is surrounded by PMTs on all faces
- 846 PMTs submerged in the liquid
- Energy Measurement
 - All PMT outputs
 - * $\sigma_E/E \sim 2\%$ (@52.8MeV)
- Position Measurement
 - PMTs on the inner face
 - * $\sigma_x = 5-6 \text{ mm} (@52.8 \text{MeV})$
- Timing Measurement
 - Averaging of signal arrival time of selected PMTs
 - * $\sigma_t \sim 70 \text{ ps} \ (@52.8 \text{MeV})$

COBRA Positron Spectrometer

- Lateral View -

- Cross-sectional View -

Hajime NISHIGUCHI (*KEK*)

"MEG Experiment"

Electronics & Trigger

- Waveform Digitizer (DRS)
 - * Up to 5GHz sampling, 12bits
 - Essential to remove pileup
 - * 1.6GHz sampling for Lig.Xe/TC
 - * 0.8GHz sampling for DC
- * MEG Trigger
 - FADC-FPGA architecture
 - * Liq.Xe charge & TC charge
 - Direction match & coincidence
 - * 6Hz DAQ rate @ physics run

librations for Liq.Xe y-ray Detector

Hajime NISHIGUCHI (KEK)

"MEG Experiment"

Calibrations for Positron Spectrometer for D

"MEG Experiment"

14

MEG History

1999	Proposal submitted to the PSI committee, approved
1999 - 2007	Detector R&D and Construction
2007 Sep.	Detector Construction completed
2007 Nov Dec.	Beam Commissioning and Engineering Run
2008 Sep Dec.	1st Physics Data Acquisition
2009 Jan Sep.	Hardware Maintenances and Upgrades
	Analysis of Run-2008 Data
Nov Dec.	2nd Physics Data Acquisition
	Analysis of Run-2009 Data
2010 Jan Jul	Maintenances
Aug	3rd Physics Data Acquisition (planned to continue till December)

MEG History

1999	Proposal submitted to the PSI committee, approved	
1999 - 2007	Detector R&D and Construction	
2007 Sep.	Detector Construction completed	
2007 Nov Dec.	Beam Commissioning and Engineering Run	
2008 Sep Dec.	1st Physics Data Acquisition	Published in <u>NP B834 (2010) 1</u>
2009 Jan Sep.	Hardware Maintenances and Upgrades	Sensitivity : 1.3x10 ⁻¹¹ U.L.(90CL) : 2.8x10 ⁻¹¹
	Analysis of Run-2008 Data	
Nov Dec.	2nd Physics Data Acquisition	
	Analysis of Run-2009 Data	
2010 Jan Jul	Maintenances	
Aug	3rd Physics Data Acquisition (planned to continue till December)	

MEG History

1999	Proposal submitted to the PSI committee, approved	
1999 - 2007	Detector R&D and Construction	
2007 Sep.	Detector Construction completed	
2007 Nov Dec.	Beam Commissioning and Engineering Run	
2008 Sep Dec.	1st Physics Data Acquisition	Published in <u>NP B834 (2010) 1</u>
2009 Jan Sep.	Hardware Maintenances and Upgrades	Sensitivity : 1.3x10 ⁻¹¹ U.L.(90CL) : 2.8x10 ⁻¹¹
	Analysis of Run-2008 Data	<u></u>
Nov Dec.	2nd Physics Data Acquisition	
	Analysis of Run-2009 Data	
2010 Jan Jul	Maintenances	Coming Soon
Aug	3rd Physics Data Acquisition (planned to contin	nue till December)

MEG 2009

Updates before the Physics Run

- * <u>Run-2008</u>
 - * Low Efficiency (70% loss of expected) due to HV discharge on DC.
 - Bad tracking resolution was also resulted.
 - Low Light Yield (45% less than expected) on Liq.Xe photon detector due to impurity of xenon.
 - * Lack of Scintillation fibre on Timing Counter

* <u>Run-2009</u>

- * Most of Problems were solved before Run-2009 in the shutdown period
- Problem with the DCs was identified and solved, all DCs were modified and have since been successfully in operation throughout the 2009 run.
- * Xenon was purified during liquefaction and recovered full performance
- Front-end electronics read-out boards were also upgraded with a new version of the digitizing chip (DRS4)

Timeline and Operation

Jan.		
Feb.	Dotoctor Maintonancos	
Mar.	Detector mannees	
Apr.	(Beam line was used by another experiment group)	
May		
Jun.		
Jul.	Installation & Conditioning	
Aug.	Installation & Conditioning	
Sep.	Electronics Upgrade	
Oct.	Engineering / Calibration	
Nov.	Physics Data Acquisition	
Dec.		

- * Stopping Rate 2.9×10⁷ / sec
- 43 days physics data taking
- 22.3 M Triggers
- 93 TB data taken

Performances in 2009

			_
	2008	PREL2009NARY	
γ Energy σE_{γ} (%)	2.0 (depth>2cm)	2.1 (depth>2cm)	
γ Timing σt_{γ} (ps)	80	>67	
γ Position σx_{γ} (mm)	5/6	5/6	
γ Efficiency ϵ_{γ} (%)	63	58	
e ⁺ Mom. σ <i>p</i> e (%)	1.6	0.74	
e ⁺ Timing σ t _e (ps)	<125	<125	
e^+ Angle $\sigma \theta_e$ (mrad)	10(φ)/18(θ)	7.4(φ)/11.2(θ)	
e ⁺ Efficiency ε _e (%)	14	40	*
γ-e ⁺ Relative Timing	148	142	
µ+ decay vertex (mm)	3.2/4.5	2.3/2.8	
Trigger Efficiency (%)	66	84	*
μ ⁺ Stopping Rate (Hz)	3×10 ⁷	2.8×10 ⁷	1
DAQ Time (days)	48	35	
Sensitivity	1.3×10 ⁻¹¹	coming soon	
BR Upper Limit	2.8×10 ⁻¹¹	coming soon	

- Several Big Improvements
 - <u>e⁺ efficiency / resolution</u>
 - Thanks to solving discharge problem
- * <u>Trigger efficiency</u>
- DAQ time is shorter than
 2008 due to other
 experiment sharing area
- Statistics-2009 : ~2×2008
 - Compensated by efficiency improvements

- Blind Analysis
 - Signal region was hidden until analysis fixed
 - Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
 - * Hidden parameters ($E_{\gamma}, T_{e\gamma}$)

* Sideband Data

- Accidental BG can be studied with off-timing sideband data
- Radiative decay can be studied with low energy sideband data

* Normalization

- Unbiased Michel data mixed in physics data
- * Wide Analysis Region
 - for likelihood fitting

Blind Analysis

- Signal region was hidden until analysis fixed
- Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
- * Hidden parameters ($E_{\gamma}, T_{e\gamma}$)

* Sideband Data

- Accidental BG can be studied with off-timing sideband data
- Radiative decay can be studied with low energy sideband data

* Normalization

 Unbiased Michel data mixed in physics data

* Wide Analysis Region

for likelihood fitting

Blind Analysis

- Signal region was hidden until analysis fixed
- Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
- * Hidden parameters ($E_{\gamma}, T_{e\gamma}$)

* Sideband Data

- Accidental BG can be studied with off-timing sideband data
- Radiative decay can be studied with low energy sideband data

* Normalization

 Unbiased Michel data mixed in physics data

* Wide Analysis Region

for likelihood fitting

- Signal region was hidden until analysis fixed
- Any study (calibration, BG estimation, performance evaluation) can be done with events outside the box
- * Hidden parameters ($E_{\gamma}, T_{e\gamma}$)

* Sideband Data

- Accidental BG can be studied with off-timing sideband data
- Radiative decay can be studied with low energy sideband data

* Normalization

 Unbiased Michel data mixed in physics data

* Wide Analysis Region

for likelihood fitting

"MEG Experiment"

* Blind Analysis

Likelihood Analysis

* Extended unbinned maximum likelihood analysis on number of events $\mathcal{L}(N_{sig}, N_{RD}, N_{BG})$

$$=\frac{N^{N_{obs}}\mathrm{e}^{-N}}{N_{obs}}\prod_{i=i}^{N_{obs}}\left[\frac{N_{sig}}{N}S+\frac{N_{RD}}{N}R+\frac{N_{BG}}{N}B\right]$$

- * Fit Parameters : # of events N_{sig} , N_{RD} and N_{BG} ($N=N_{sig}+N_{RD}+N_{BG}$)
- * Observables : Energy E_{γ} , E_{e} , Relative time $T_{e\gamma}$ and Opening angle $\theta_{e\gamma}$, $\phi_{e\gamma}$
- * Probability Density Function for each event type (*S*, *R*, *B*)
 - PDFs are extracted from data
- ∗ Fit in Wide region (10*o*)
 - Fit Signal and Background simultaneously
- Three Independent Analysis Tools
 - **Different PDF implementation**

Fit or Input N_{RD}

check, understanding or find bug

Different Statistical treatment (Frequentist or Bayesian)

Hajime NISHIGUCHI (KEK)

"MEG Experiment"

Hajime NISHIGUCHI (KEK)

"MEG Experiment"

Normalization - # of Muon Decay -

$$\frac{\mathcal{B}(\mu^+ \to e^+ \gamma)}{\mathcal{B}(\mu^+ \to e^+ \nu \bar{\nu})} = \frac{N_{sig}}{N_{e\nu\nu}} \times \frac{f_{e\nu\nu}^{e}}{P \cdot \epsilon_{pu}} \times \frac{\epsilon_{e\nu\nu}^{trig}}{\epsilon_{e\gamma}^{trig}} \times \frac{\epsilon_{e\nu\nu}^{DC}}{\epsilon_{e\gamma}^{DC}} \times \frac{1}{A_{e\gamma}^{geo}} \times \frac{1}{\epsilon_{e\gamma}}$$

- # of Michel Positrons is counted simultaneously using highly pre-scaled trigger applying the same event selection as for the *physics* data sample.
- Advantage: Independent of beam-rate & in 1st-order insensitive to acceptances & efficiencies (ratios)
- Branching ratio is represented by obtained normalization factor "k" and the # of signal which will be obtained by the final analysis

$$\mathcal{B}(\mu^+ \to \mathrm{e}^+ \gamma) = \frac{k}{N_{sig}}$$

* Obtained normalization factor $\frac{k'' = (1.0 \pm 0.1) \times 10^{12}}{10^{12}}$

Sensitivity

- * Mean Upper Limit (90%C.L.) on ensemble of toy-MC experiments
 - * Generate events with obtained PDFs assuming Null-Result Hypothesis
 - Repeat toy-MC experiments and calculate Upper Limit for each experiment in the same way as real data

Mean Sensitivity of Run2009 : 6.1×10⁻¹² (90CL.)

(including no systematics)

* Signal-detection power of our likelihood analysis was also checked by dedicated toy-MC with mixed $\mu \rightarrow e\gamma$ signal events

Hajime NISHIGUCHI (*KEK*)

Sideband fits

* To confirm the final analysis, Off-timing Sideband data is fitted

- * Sideband-fit results : **BR UL Sensitivity < 4~6×10**⁻¹²
- * No Signal in Sideband / Sideband Fit is consistent with obtained Sensitivity

Now Ready to Open the BOX !!

Hajime NISHIGUCHI (KEK)

"MEG Experiment"

Event Distribution

48

52

51

53

55

E_e (MeV)

54

* Contours of the PDFs (1σ , 1.64σ & 2σ) are shown

* Same events in two plots are numbered correspondingly, by decreasing ranking in terms of relative signal likelihood (*S*(*R*+*B*))

- Highest Ranked (=most signal-like) Event
- * No pileup, Relative Angle and Relative Timing are checked.
- * Every highly ranked events are checked carefully.

Likelihood-Fitting Result R

Likelihood-Fitting Result R

* N_{sig} < 14.5 (90CL.) → 𝔅(µ⁺→e⁺γ)²⁰⁰⁹ < 1.5×10⁻¹¹ (90CL.)
 * N_{sig}=0 is in 90% confidence region

Systematic Uncertainties RR

 Systematic Effect is taken into account in the calculation of confidence region <u>by fluctuating PDFs</u> according to the uncertainty values.

Normalization	8%	E_{e} dep. $\oplus \varepsilon^{\gamma} \oplus \varepsilon^{trig}$
E_{γ} Scaling	0.4%	Light Yield & Gain Stability
E_{γ} Resolution	7%	
E _e Scaling	50 keV	From Michel edge
<i>E</i> _e Resolution	15%	
T _{eγ} Centering	15 ps	
$T_{e\gamma}$ Resolution	10%	Radiative Peak
Angle	7.5 mrad	Tracking \oplus LXe Position
Angular Resolution	10%	
$E_{\rm e}$ - $\phi_{\rm e}$ Correlation	50%	MC evaluation

Effect of each component is evaluated by looking at the change of best-fit value when the parameter is changed according to the uncertainty.

• Effect is enough small compared to the statistical uncertainties

Prospects

Provisional Performances in 2010

	PREL2009NARY	PROV2010NAL
γ Energy σE_{γ} (%)	2.1 (depth>2cm)	1.5 (depth>2cm)
γ Timing σt_{γ} (ps)	>67	\leftarrow
γ Position σx_{γ} (mm)	5/6	\leftarrow
γ Efficiency ϵ_{γ} (%)	58	\leftarrow
e + Mom. σ <i>p</i> _e (%)	0.74	0.7
e ⁺ Timing σ <i>t</i> _e (ps)	<125	95
e^+ Angle $\sigma \theta_e$ (mrad)	7.4(φ)/11.2(θ)	8(φ)/8(θ)
e ⁺ Efficiency ε _e (%)	40	←
γ-e ⁺ Relative Timing	142	120
µ+ decay vertex (mm)	2.3/2.8	1.4/2.5
Trigger Efficiency (%)	84	84 -9 4%
µ+ Stopping Rate (Hz)	2.8×10 ⁷	2.9×10 ⁷
DAQ Time (days)	35	95
Sensitivity	6.1×10 ⁻¹²	(2.0-2.5)×10 ⁻¹²
BR Upper Limit	1.5×10 ⁻¹¹	????

- Possible Improvements
 - *σ*_T will be improved by better synchronization of digitizer
 - Possible better

 calibration with
 monochromatic e⁺ beam
 and improve positron
 tracking
 - Noise reduction and electronics modification for DC
 - Refinement of calorimeter analysis
 - TC-fibres in Trigger

Future Prospects

- * MEG2010 is now running (physics run resumed August 2010)
 - * Will accumulate **×3** statistics in this year, with improved performances
 - Sensitivity will be improved accordingly
- * MEG Physics Run continues until 2012 (at least, guaranteed by committee)
 - Another two years full run
 - * 2009 Results will be clarified by ourselves with long term stable run
- * MEG is aiming a sensitivity of <u>a few × 10⁻¹³</u> level

Conclusions

- * In 2009, MEG carried out 2 months physics run successfully
 - * All the major problems that were occurred in 2008 was fixed
 - Performances (resolution & efficiency) were improved accordingly
 - Stable detector operation over whole data-taking period
- Preliminary Result from 2009 data analysis:
 - * <u>Sensitivity : 6.1×10⁻¹²</u>
 - * <u>Upper Limit : 1.5×10⁻¹¹ (90CL.)</u>
 - * <u>"N_{sig} = 0" is still contained in 90% confidence region</u>
 - * (Best fit is " $N_{sig}=3$ ", probability of this result is approx. 2-3% in toy MC)
- * MEG is currently running at close to full efficiency and is expected to continue data taking in the next years. Its sensitivity to the decay will be improved by more than one order of magnitude, therefore it is expected to either place the strongest constraints on new physics models or have a great chance to make a discovery.

PSI Proton Cyclotron

- The cyclotron facility contains a cascade of three accelerators that deliver a proton beam of 590 MeV energy at a current up to <u>2 mA (1.2 MW)</u>.
- Pre-accelerated in a C-W column to an energy of 870 keV, secondaryaccelerated in the 4-sector Injector 2 cyclotron up to 72 MeV.
- Final acceleration of the main beam to 590 MeV occurs in the large 8sector Ring Cyclotron, from which the beam is transported through the experimental hall in a shielded tunnel.