Using near detector(s) to predict far detector events in NOvA Zelimir Djurcic Argonne National Laboratory

NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams and Beta Beams

-NOvA detector(s) construction is underway (see B. Rebel talk on NOvA status).

-Time to think how to use near detector(s) to predict events in far detector.

-NOvA is NuMI Off-Axis v_e Appearance Experiment.

-NOvA will be using NuMI neutrino beam from Fermilab to Ash River in Minnesota (810km baseline).

-NOvA is two detector experiment where near detector is used to predict events in far detector.

-Near and Far detector functionally identical.

-NOvA benefits from MINOS and MiniBooNE experience.

- -Beam spectrum tunable by horn currents, relative placement of target and horns.
- -Can select v or \overline{v} predominant
- beam depending on horn current polarity.
- -10µs beam spill (every 2.2 sec).

- -Operating since 2005 (MINOS, MINERvA, ArgoNEUT) -Routinely delivers 280-300kW
- beam power.
- -Most operations to-date in "Low
- Energy" mode optimized for
- MINOS on-axis location.
- Future: -700 kW power to NuMI using existing accelerator complex. -Reduce cycle time from 2.2 to 1.33 seconds.

NuMI Neutrino Beam

NuMI spectrum is "calibrated".

Extensive experience with MINOS data.

MINOS acquired datasets in variety of NuMI configurations. Tuned kaon and pion production (x_F, p_T) to MINOS data.

Same parent hadrons produce neutrinos seen by NDOS (MiniBooNE).

Flux at NDOS (MiniBooNE) should be well-described by NuMI beam MC.

D.G. Michael et al, Phys. Rev. Lett. 97:191801 (2006) D.G. Michael et al, arXiv:0708.1495 (2007)

NOvA uses an Off-Axis Beam

On-axis, neutrino energy more tightly related to hadron energy.
Off-axis, neutrino spectrum is narrow-band and "softened".
Easier to estimate flux correctly: all mesons decay to ≈ same E_v.

NOvA uses an Off-Axis Beam

- -More flux near oscillation maximum
- -Reduction of high energy tail reduces a NC background.
- -Concentration of v_e from oscillation relative to intrinsic beam v_e (from
- 3-body K and μ decay).
- -NOvA will use Medium Energy NuMI Configuration (MINOS mostly used Low Energy mode).

NOvA Far Detector

NOvA Far Detector

- -NuMI flux simulation for Far detector in Medium Energy
- configuration.

Φ(E) [v/10⁶POT/GeV/cm²] ₈₋₀₁ [v/10⁶POT/GeV/cm²]

10-12

0

0.5

1.5

1

2.5

2

- -Neutrino mode.
- -Unoscillated spectra.

3.5

 $E_v[GeV]$

3

NOvA near detector(s) and Fermilab Neutrino Beams

NOvA Near Detector

-Identical to Far Detector (in material, segmentation, and orientation), except smaller, with muon catcher. -Same off-axis angle as Far. -210 T total mass, 20 T fiducial mass. Veto Region Muon Catcher Shower Containmen 2 Region Target Region 10

NOvA Near Detector

NOvA Near Detector

-NuMI flux simulation for Near detector in Medium Energy configuration. $\sqrt{10^{-1}}$

-NuMI flux simulation for NDOS detector in Low Energy

configuration.

-Neutrino mode.

- -This component
- well measured at NDOS.
- -Used to tune K's at Near.
- -Study reconstruction and particle ID (enhanced v_e component). -Will measure Booster v's.

-NuMI beam currently operates in neutrino mode, expect anti-neutrino mode early next year.

-NDOS may get measurement in both modes.

-Neutrino mode: 2.1x10²⁰ POT.

GeV	Total CC	CC QE	CC RES	CC DIS	CC COH	NC
v <u>"Total</u>	4751	2288	1533	861	38	1911
1.6-2.4	1931	559	842	511	20	699
v _e Total	340	166	119	50		125
v _u Total	624	323	179	103	14	353
1.6-2.4	132	50	55	24		142
v _e Total	37	19	12	5		19

-Neutrino mode: 2.1x10²⁰ POT.

-NuMI beam currently operates in neutrino mode, expect anti-neutrino mode early next year.

-NDOS may get measurement in both modes.

-Anti-neutrino mode: 2.1x10²⁰ POT.

GeV	Total CC	CC QE	CC RES	CC DIS	CC COH	NC
v _u Total	2664	1259	789	505	21	1056
1.6-2.4	498	143	216	134		180
v _e Total	306	148	106	48		113
v,,Total	873	471	262	119	19	507
1.6-2.4	363	139	151	65		170
_v _e Total	52	28	17	6		28

-Anti-neutrino mode: 2.1x10²⁰ POT.

-Neutrino spectrum without oscillations at Far detector is similar but not identical to the Near spectrum.

- -Neutrino energy depends on angle wrt original meson direction and meson's energy.
- -Higher energy pions decay further along decay pipe.
- -Angular distributions different between neutrinos seen at Near and Far detectors.

-Comparison of Neutrino spectra at Near and Far detectors -Neutrino mode.

Normalized by area

20

-Ratio of Neutrino spectra at Near and Far detectors -Neutrino mode.

-Covariance Matrix correlating fluxes at Near and Far detectors. -Compare NOvA beam matrix/ratio vs MINOS for v_{μ} 's:

-For v_e appearance analysis need extrapolation of backgrounds.

-Experience from MINOS:
-used various beam configurations to enhance each background (NC, intrinsic ν_e 's, and ν_μ 's) in horn-off, HE, and LE configuration.
-bkgd components decomposed and extrapolated independently.

10² v_{u} (no oscillation) neutral-current v_{μ} (after oscillation) E vents / kt/ 3.7E20POT / GeV 0 10 signal v beam v 10 Ê E_v (GeV) 4

-However, off-axis beam more robust against change of beam configuration \rightarrow less difference in bkgds.

-shower reconstruction for NOvA being developed.
-one option to consider for NOvA is MRCC (muon removed shower reconstruction), used in MINOS as well.

3 σ Sensitivity to sin²(2 θ_{13}) \neq 0

-Sensitivity calculations performed assuming a systematic uncertainty in the background extrapolation from the near to far detector of 10%.

95% CL Resolution of the Mass Ordering

Events from NuMI detected at MiniBooNE

25

v_{μ} CCQE and v_{e} CCQE samples from NuMI at MiniBOONE

Proposed SciNOvA Project

- -Place fine-grained detector (scint. strips, SciBar-like) in front of NOvA Near. -Measurement of ν -nucleaus scattering in narrow-band
- beam. -Enhance NOvA program by precise measurements of NC background.

More fine-grained detector would enable a data-driven check of NC π^0 background (i.e. efficiency).

Summary

-NOvA is NuMI Off-Axis v_e Appearance Experiment. -NOvA will be using NuMI neutrino beam from Fermilab to Ash River in Minnesota (810km baseline).

-NOvA is two detector experiment where near detector is used to predict events in far detector.

-Near and Far detector functionally identical.

-NOvA near detector will be taking data at two different locations and beam configurations (NDOS and Near location).
-NOvA will use input from MINOS experiment.
-NOvA will use input from MiniBooNE (and SciBooNE) experiments.
-Possible input from proposed SciNOvA experiment.

Backups

Need to know wrong sign vs right sign.

We cannot separate v_{μ} and bar- v_{μ} on event-by-event basis.

We measure it.

 v_{μ} CCQE gives more forward peaked muon.

-Covariance Matrix correlating fluxes at Near and Far detectors

