Using Near Detector Data to Make Far Detector Predictions in an On-Axis Long-Baseline Experiment

Lisa Whitehead Brookhaven National Laboratory for the MINOS Collaboration

NuFact 2010, Mumbai, India October 23, 2010

Intro

Why a near neutrino detector?

To observe oscillations, measure number of events in a detector and extract oscillation probability:

If you have an "identical" near neutrino detector, it's a relative measurement

Flux and cross section uncertainties (which can be large) mostly cancel!

On-axis long-baseline experiments with a near detector: K2K (1999-2004) MINOS (2005-present) LBNE (Future)

NuMI Beam

- \bullet protons from the Main Injector hit a carbon target, producing mostly π
- focus π^+ , then $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ (neutrino mode)
- OR focus π^- , then $\pi^- \rightarrow \mu^- \overline{\nu_u}$ (anti-neutrino mode)
- v_e contamination from $\mu^{+(-)} \rightarrow e^{+(-)} \overline{v_{\mu}} \overline{v_{e}}$
- Target position can be changed to tune the neutrino energy spectrum

MINOS detectors

Both detectors are made of alternating layers of steel plates and scintillator strips in a \sim 1.3 T toroidal magnetic field

735 km from the target
5.4 kilotons
8 m octagonal planes
486 planes (30 m)
700 m (2100 m.w.e.)
Few v interactions/day

1 km from the target 1 kiloton ~4 m tall planes 282 planes (15 m) 100 m (280 m.w.e) Few v interactions/spill

How does MINOS use ND Data?

For oscillation studies:

- Tuning of beam simulation
- Predicting the unoscillated $v_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ or $\overline{v}_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ CC spectrum in

the far detector

- Predicting the background to $\nu_{\sc a}$ appearance in the

far detector

- Predicting the NC spectrum in the far detector

Other:

- neutrino cross section measurements
- observation of atmospheric muons

Beam Simulation Tuning

Data taken in several beam configurations is used to constrain the neutrino flux calculation

- Parametrize the production yield of π 's off the target (d²N/dp₁dp₁)
- Fit the data by tuning the production in the beam MC
- Data from different beam configurations sample different regions of the π 's (p₂,p₁)

v_{μ} or $\overline{v_{\mu}}$ Disappearance

 v_{μ} spectrum

Use ND data to predict unoscillated spectrum

Look for deficit in FD data relative to prediction

CC Near Detector Data

Neutrino data

Far/Near Flux Ratio

Near to Far Extrapolation

Far spectrum without oscillations is not identical to the near spectrum

Use beam simulation to create a matrix that transports the measured near spectrum to the far

CC Far Detector Data

Electron Neutrino Appearance

Apply v_e selection criteria to ND data and use this sample to predict FD background

Looking for small excess of v_{e} -like events in FD data over ND-based background prediction

 $\sin^{2}(2\theta_{13})=0.15$ $\sin^{2}(2\theta_{23})=1.0$ $\Delta m^{2}=2.43\times10^{-3} \text{ eV}^{2}$

Near Detector v_{a} -like Data

Background composed of NC, v_{μ} CC, Beam v_{e} CC

FD prediction must account for: flux (~1/R²) fiducial volume beam geometry oscillations detector effects

Some factors affect each background component differently

Need to separate the background into different components for extrapolation!

Use these 3 data sets to measure the 3 background components in the standard sample...

MC doesn't model the absolute event rate well BUT the MC does model the relative event rate well

For example - The relative rate of NC interactions between the standard configuration and the horn off configuration. R_{NC}^{Off}

Similarly: $R_{NC}^{HE/Std}$, $R_{\nu_{\mu}CC}^{Off/Std}$, $R_{\nu_{\mu}CC}^{HE/Std}$, $R_{\nu_{e}CC}^{Off/Std}$, $R_{\nu_{e}CC}^{HE/Std}$

Std

Using:

- Total measured rate in each beam configuration
- Relative interaction rates for each background component from the MC simulation

Can fit for the background components in the standard sample (in bins of energy)

Results of the Fit

Background Extrapolation

MC Far/Near ratio takes care of:

- Flux
- Fiducial volume
- energy smearing
- v_{μ} disapp.
- detector
 effects

Far Detector v_e -like Data

Summary

MINOS uses ND data to tune the beam simulation and make FD predictions for both disappearance and appearance analyses.

Capability of NuMI to run in different configurations is key!

Backup Slides

MINOS detectors

Steel thickness: 2.54 cm (~1.4 radiation lengths)

Strip width: 4.1cm Moliere radius (radius of 90% containment of EM showers) ~3.7cm

Strips in adjacent planes are oriented orthogonally enabling 3D reconstruction

Each strip has a wavelength shifting fiber read out by a multi-anode photomultiplier tube

U/V strips oriented ±45° from vertical

beam

Neutrino Interactions at MINOS

MC events

Far/Near Differences in MINOS

Far/Near differences (modeled in MC)

difference in fiber length (light level difference)

multiplexing in the far detector (8 fibers per PMT channel)

one-sided readout in the near detector

PMTs (64-channel in near, 16-channel in far) - different crosstalk pattern, gains, front end electronics

faster readout in near detector

MINOS Far/Near Flux Ratio

K2K

- Suite of near detectors at KEK, including 1 kton WC
- Super-Kamiokande (50 kton WC) as far detector
- 250 km baseline
- 1.3 GeV peak neutrino energy
- Near WC detector data used for SuperK prediction
- Data from all near detectors used to tune the flux simulation

LBNE

See yesterday's talk by S. Mishra

- Both water and LAr targets in the ND
- Measure $\nu_{\!_{\mu}},\,\nu_{_{e}},\,\overline{\nu}_{\!_{\mu}},\,\overline{\nu}_{_{e}},$ components of the beam
- Identify event classes important for oscillation analysis: e.g. v_{μ} CCQE, v_{e} CCQE, NC π^{0}
- Possibility of having several beam configurations like NuMI?