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Intro
Why a near neutrino detector?

On-axis long-baseline experiments with a near detector:
K2K (1999-2004)
MINOS (2005-present)
LBNE (Future)
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To observe oscillations, measure 
number of events in a detector 
and extract oscillation probability:

Flux

If you have an “identical” near 
neutrino detector, it's a relative 
measurement
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N
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Flux and cross section uncertainties 
(which can be large) mostly cancel!

oscillations

Cross 
section

Detection 
efficiency

Exposure 
(mass x livetime)measured
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NuMI Beam

● protons from the Main Injector hit a carbon target, producing mostly 
● focus +, then + →  + 


 (neutrino mode)

● OR focus , then  →   


 (anti-neutrino mode)

● 
e
 contamination from +(-) → e+(-) 




e

●
 
Target position can be changed to tune the neutrino energy spectrum

( )
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MINOS detectors
Both detectors are made of alternating layers of steel plates 

and scintillator strips in a ~1.3 T toroidal magnetic field

NEARFAR

735 km from the target
5.4 kilotons
8 m octagonal planes
486 planes (30 m)
700 m (2100 m.w.e.)
Few  interactions/day

1 km from the target
1 kiloton
~4 m tall planes
282 planes (15 m)
100 m (280 m.w.e)
Few  interactions/spill
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How does MINOS use ND Data?

For oscillation studies:
- Tuning of beam simulation
- Predicting the unoscillated 


or 


 CC spectrum in 

the far detector
- Predicting the background to 

e
 appearance in the 

far detector
- Predicting the NC spectrum in the far detector

Other:
- neutrino cross section measurements
- observation of atmospheric muons
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Beam Simulation Tuning

Data taken in several 
beam configurations 
is used to constrain 
the neutrino flux 
calculation

LE HE

- Parametrize the production yield of 
's off the target (d2N/dp

z
dp

T
)

- Fit the data by tuning the 
production in the beam MC
- Data from different beam 
configurations sample different 
regions of the 's (p

z
,p

T
)
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

 or 


 Disappearance 



 spectrum

sin22=1.0
m2

=3.35×10−3 eV 2

unoscillated

oscillated

Use ND data to 
predict unoscillated 
spectrum

Look for deficit in FD 
data relative to 
prediction
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CC Near Detector Data

Neutrino data

Anti-neutrino data
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Far/Near Flux Ratio

Flux Far/Near Ratio:
1/R2 fall-off
Point source vs extended source
- solid angle acceptance
- decay kinematics
- focusing
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Near to Far Extrapolation

Use beam simulation 
to create a matrix that 
transports the 
measured near 
spectrum to the far

Far spectrum 
without oscillations 
is not identical to 
the near spectrum



11L. Whitehead, BNL October 23, 2010

CC Far Detector Data

Prediction based 
on ND data

Neutrino data

Anti-neutrino data
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Electron Neutrino Appearance

Apply 
e
 selection criteria to 

ND data and use this sample 
to predict FD background

Looking for small excess of 


e
-like events in FD data over 

ND-based background 
prediction

sin2213=0.15

sin2223=1.0

m2=2.43×10−3 eV 2

Expected Background
Example Signal
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Near Detector 
e
-like Data

FD prediction must 
account for:
flux (~1/R2)
fiducial volume
beam geometry
oscillations
detector effects

Background composed of 
NC,  


 CC, Beam 

e
 CC

Some factors affect each background 
component differently

Need to separate the background into 
different components for extrapolation!
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Data-Driven Background Separation

Use these 3 data sets to measure the 3 
background components in the standard sample...

STANDARD

HORN-OFF HIGH-ENERGY

Take ND data with 3 different 
beam configurations

Select 
e
-like events in each 

data set
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Data-Driven Background Separation

MC doesn't model the absolute event rate well
BUT the MC does model the relative event rate well

For example - 
The relative rate of NC interactions between the 
standard configuration and the horn off configuration.

Similarly:

STANDARD

HORN-OFF HIGH-ENERGY

RNC
Off / Std

RNC
HE /Std , RCC

Off /Std , RCC
HE /Std , Re CC

Off /Std , Re CC
HE /Std
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Data-Driven Background Separation

Using:
- Total measured rate in each beam configuration
- Relative interaction rates for each background component from 
the MC simulation

Can fit for the background components in the standard sample
(in bins of energy)

STANDARD

HORN-OFF HIGH-ENERGY
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Data-Driven Background Separation

STANDARD

HORN-OFF HIGH-ENERGY

N Std
=N NCN CCN eCC

N Off =RNC
Off /Std N NCRCC

Off /Std N CCRe CC
Off /Std N eCC

N HE
=RNC

HE /Std N NCRCC
HE /Std N CCRe CC

HE /Std N e CC

Measured MC ratios

Determined by fit
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Near Detector 


e
 Background 

sample is:

NC: (64±5)%



-CC: (23±5)%


e
-CC: (13±3)%

Data-Driven Background Separation

Results of the Fit
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Background Extrapolation

MC Far/Near 
ratio takes 
care of:
● Flux
● Fiducial 
volume
● energy 
smearing
● 


 disapp.

● detector 
effects

F i=N i×Ri
F /N

Error bars are systematic.

F/N ratio method is also used 
to predict the total FD NC rate 
for the sterile  search

Far Detector 
Prediction

Near Detector 
Data
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Far Detector 
e
-like Data

Prediction based 
on ND data
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Summary

MINOS uses ND data to tune the beam simulation and 
make FD predictions for both disappearance and 
appearance analyses.

Capability of NuMI to run in different configurations is key!



22L. Whitehead, BNL October 23, 2010

Backup Slides
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Multi-anode PMT

Extruded
PS scint.
4.1 x 1 cm

WLS fiber

Clear
Fiber cables

2.54 cm Fe

U V planes
+/- 450

U V U V U V U V

Steel thickness: 2.54 cm (~1.4 radiation 
lengths)

Strip width: 4.1cm 
Moliere radius (radius of 90% 
containment of EM showers) ~3.7cm

Strips in adjacent planes are oriented 
orthogonally enabling 3D reconstruction

Each strip has a wavelength shifting 
fiber read out by a multi-anode 
photomultiplier tube

MINOS detectors

U/V strips 
oriented 
±45o  from 
vertical

beam
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Neutrino Interactions at MINOS



N-X



 Charged 

Current (CC)

MC events


e
 Charged 

Current (CC)
Neutral Current 

(NC)
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Far/Near Differences in MINOS
Far/Near differences (modeled in MC)                                   
                                                
 difference in fiber length (light level difference)                         
        
 multiplexing in the far detector (8 fibers per PMT channel)       
 
 one-sided readout in the near detector                                     
         
 PMTs (64-channel in near, 16-channel in far) - different 
crosstalk pattern, gains, front end electronics                            
        
 faster readout in near detector                                                  
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MINOS Far/Near Flux Ratio
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K2K

● Suite of near detectors at KEK, including 1 kton WC
● Super-Kamiokande (50 kton WC) as far detector
● 250 km baseline
● 1.3 GeV peak neutrino energy
● Near WC detector data used for SuperK prediction
● Data from all near detectors used to tune the flux simulation
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LBNE

- Both water and LAr targets in the ND
- Measure 


, 

e
, 


, 

e
, components of the beam

- Identify event classes important for oscillation analysis: e.g. 



CCQE, 

e
CCQE, NC 0

- Possibility of having several beam configurations like NuMI?

LAr

Straw tube 
tracker (with 
H20 target)

See yesterday's talk by S. Mishra

ND
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