

Absolute Neutrino Mass Measurements

Joachim Wolf (KATRIN Collaboration)

Institute of Experimental Nuclear Physics

NuFact10, Mumbai / India

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Methods to determine the neutrino mass scale

- Cosmology
 effect of neutrinos on structure formation
- Search for $0\nu\beta\beta$ decays decay only possible for massive Majorana neutrinos
- Direct neutrino mass detection: No further assumptions needed ($E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$)
 - − **Time-of-flight measurements** (v from supernova) SN1987a \Rightarrow m(v_e) < 5.7 eV (PDG 2006)
 - Kinematics of weak decays (β -decay search for m_{ve})
 - tritium β-decay spectrometers
 - ¹⁸⁷Re β-decay bolometers
 - search for other low-Q isotopes ?

Cosmology and neutrino mass

S. Hannestad: arXiv:1007.0658v2

KIT - Institute of Experimental Nuclear Physics

- massive neutrinos contribute to hot dark matter
- kinematic effect of HDM on structure formation
- sensitive to **total energy density** of neutrinos (Σm_i)
- different models using various sets of parameters and data
- minimal Λ CDM plus $m_v : \Sigma m_j < 0.4 \text{ eV} (\text{CMB} + \text{LSS})$
- current bounds: $0.3 \text{ eV} \le \Sigma m_j \le 2 \text{ eV}$

J. Wolf: Absolute neutrino mass measurement

22.10.2010

Cosmology and neutrino mass

Future probes of neutrino mass:

- new galaxy redshift surveys (BOSS, HETDEX, WFMOS,...)
- weak lensing surveys
- CMB: PLANCK satellite (launched: 14.May 2009)
- Lyman- α forest measurements (BOSS)
- cluster surveys
- 21 cm measurements

Expected sensitivity:

- short term (5-7 y): $0.1 \text{ eV} \le \Sigma m_j \le 0.6 \text{ eV}$
- long term (7-15 y): $0.05 \text{ eV} \le \Sigma m_j \le 0.4 \text{ eV}$

S. Hannestad: arXiv:1007.0658v2

Neutrino-less double- β -decay and neutrino mass

O. Cremonesi: arXiv: 1002.1437v1

- 2 decay modes in double-β-decay:
 - normal ($2\nu 2\beta$)
 - $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$
 - allowed by standard model
 - continuous energy spectrum
 - has been **observed** (t ~ 10⁻¹⁹ 10⁻²¹ y)
 - neutrinoless ($0\nu 2\beta$)
 - $(A,Z) \rightarrow (A,Z+2) + 2\overline{\nu}_e$
 - needs massive Majorana neutrinos
 - energy peak at endpoint
 - τ > 10²⁵ y
 - violation of total lepton number conservation

Measurement: decay rate •

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} \cdot \left| M^{0\nu} \right|^2 \cdot \left| m_{\beta\beta} \right|^2$$

 $-G^{0
u}$ phase space integral

(exactly calculable) $-M^{0\nu}$ nuclear matrix element

(wide range of different calculations)

– m_{etaeta} effective neutrino mass with Majorana phases lpha

(cancellation of mass terms possible)

$$m_{\beta\beta} = \sum_{j=1}^{3} \left| U_{ej} \right|^2 \cdot e^{i\alpha_j} \cdot m_j$$

Neutrino-less double- β -decay and neutrino mass

accuracy limited by nuclear matrix element calculation

Figure 1: Expected $\beta\beta(0\nu)$ half lives for 50 meV effective neutrino mass and different NME calculations: IBM2 [17], YI09 [18], TU08 [19] and SM08 [20]. O. Cremonesi: arXiv: 1002.1437v1

Neutrino-less double- β -decay and neutrino mass

- Heidelberg-Moskau (⁷⁶Ge)
- KHDH analysis: $T_{1/2} = 2.23 \times 10^{25} \text{ y}, m_{\beta\beta} = 0.32 \text{ eV}$ (6 σ) H. V. Klapdor-Kleingrothaus and I. V. Krivoshein, Mod. Phys. Let. A, Vol. 21, No. 20 (2006) 1547
- IGEX (⁷⁶Ge) $T_{1/2} > 1.57 \times 10^{25}$ y, $m_{\beta\beta} < 0.33 1.35$ eV
- Cuoricino (¹³⁰Te) $T_{1/2} > 3.0 \times 10^{25} \text{ y}, m_{\beta\beta} < 0.19 0.68 \text{ eV}$
- **NEMO 3**
 - ¹⁵⁹Nd $T_{1/2} > 1.8 \times 10^{22} \text{ y}, m_{\beta\beta} < 4.0 6.3 \text{ eV}$
 - ¹⁰⁰Mo $T_{1/2} > 2.7 \times 10^{22} \text{ y}, m_{\beta\beta} < 0.19 0.68 \text{ eV}$
 - ¹¹⁶Cd, ⁸²Se, ⁹⁶Zr, ⁴⁸Ca and ¹³⁰Te
- positive signal can also come from physics beyond the SM

• $\mathbf{0}v\mathbf{2}\beta$ only provides upper limit on neutrino mass

H. V. Klapdor-Kleingrothaus and I. V. Krivoshein, Mod. Phys. Let. A, Vol. 21, No. 20 (2006) 1547

Neutrino-less double- β -decay and neutrino mass

Future scenarios and branching points in terms of discovery

Neutrino-less double- β -decay and neutrino mass

12 22.10.2010

Standard β -decay and neutrino mass

kinetic measurement of the effective neutrino mass

E W Otten and C Weinheimer 2008 Rep. Prog. Phys. 71 086201

Fermi's golden rule:

$$\frac{d\Gamma}{dE} = C \cdot F(E) \cdot p \cdot (E + m_e)(E_0 - E) \cdot \sum_i \left| U_{ei} \right|^2 \cdot \sqrt{(E_0 - E)^2 - m_{v_i}^2}$$

If the energy resolution is much larger than Δm_{ν} we see only an **effective neutrino mass** m_{β} :

$$\sqrt{(E_0 - E)^2 - \sum_i |U_{ei}|^2 \cdot m_{v_i}^2} \quad \text{with} \quad m_\beta^2 = \sum_i |U_{ei}|^2 \cdot m_{v_i}^2$$

measurement: look for missing energy close to the endpoint

- high energy resolution
- high activity

Standard β-decay and neutrino mass

kinetic measurement of the effective neutrino mass

E W Otten and C Weinheimer 2008 Rep. Prog. Phys. 71 086201

Fermi's golden rule:

$$\frac{d\Gamma}{dE} = C \cdot F(E) \cdot p \cdot (E + m_e)(E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_\beta^2}$$

Low Q value necessary

Tritium as β-emitter:

- high specific activity (t_{1/2}=12.3a)
- endpoint energy E₀=18.6 keV
- super allowed transition

Rhenium as β**-emitter**:

- low spec. activity (t_{1/2}=4.3·10¹⁰a)
- endpoint energy $E_0=2.47$ keV
- uniquely forbidden transition

Measurement of the β -spectrum

Spectrometer (tritium)

- energy selected by electric or magnetic fields
- external β-source
- energy loss due to scattering
- energy resolution 0.93 eV (100%)
- low count rate in detector
- lower energies rejected
- event fraction in last 10 eV: 3.10⁻¹⁰
- present sensitivity: 2 eV
- planned sensitivity: 0.2 eV

Micro-calorimeter (¹⁸⁷Re)

- energy measured by cryogenic bolometer
- β -source = detector
- measures entire β-decay energy
- energy resolution $\approx 5 10 \text{ eV}$ (FWHM)
- full count rate (pile-up !)
- many small detectors needed
- event fraction in last 10 eV: 1.3·10⁻⁷
- present sensitivity: 15 eV
- planned sensitivity I: 2 eV
- planned sensitivity II: 0.2 eV

MARE

Cryogenic Detectors

MARE 1 in Milan: MC sensitivity

19 22.10.2010

MARE 1 activities

- Isotope physics investigation and systematics assessment
 - ¹⁶³Ho + Si-impl/TES (U Genova U Milano-Bicocca U Lisbon/ITN)
 - AgReO₄ + Si-impl (U Milano-Bicocca U Como NASA/GSFC UW Madison)
- Sensor-Absorber coupling (¹⁸⁷Re/¹⁶³Ho) and single pixel design
 - ¹⁸⁷Re + TES (U Genova U Miami U Lisbon/ITN)
 - ▶ ¹⁸⁷Re + MMC (U Heidelberg)
 - ▶ ¹⁶³Ho + TES (U Genova)
 - ¹⁶³Ho + MMC (U Heidelberg)
 - ¹⁶³Ho/¹⁸⁷Re + MKID (U Milano-Bicocca JPL/Caltech U Roma FBK)
- Multiplexed sensor read-out
 - SQUID multiplexing (U Genova PTB)
 - SQUID microwave multiplexing (U Heidelberg)
- Software tools
 - Data Analysis (U Miami)
 - Montecarlo simulations (U Miami U Milano-Bicocca)

20	22.10.2010	.I Wolf Absolute neutrino mass measurement	NuFact 2010 Mumbai / India	KIT - Institute of Experimental Nuclear Physics
	Conca Specchiulla, 4-11 September 2010		NOW2010	Elena Ferri 18

MARE 2 statistical sensitivity: Re & Ho options

- only statistical analysis
- 50000+ detectors gradually deployed
 - > arrays distributed in many laboratories around the world \triangleright about 10¹³÷10¹⁴ events after 5 years

Exposure required for 0.2 eV m, sensitivity

Principle of the MAC-E-Filter

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid

Principle of the MAC-E-Filter

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- e⁻ in forward direction: magnetically guided
- adiabatic transformation: μ = E_⊥/B = const.
 ⇒ parallel e⁻ beam

Principle of the MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- e⁻ in forward direction: magnetically guided
- adiabatic transformation: $\mu = E_{\perp}/B = const.$ \Rightarrow parallel e⁻ beam
- Energy analysis by electrostat. retarding field $\Delta E = E \cdot B_{min} / B_{max} = E \cdot A_{s,eff} / A_{analyse}$ Mainz \approx 4.8 eV; KATRIN = 0.93 eV

The KATRIN experiment

The KATRIN Setup

source & transport section

spectrometer & detector section

30 22.10.2010

32 22.10.2010 J. Wolf: Absolute neutrino mass measurement NuFact 2010, Mumbai / India

KIT - Institute of Experimental Nuclear Physics

Status of the main spectrometer

- successfull bake-out (350°C) and vacuum tests
- inner electrode system being prepared for installation
 - 23440 individual wires in 248 frames (University Münster)
- Helmholtz coils with 12.6 m diameter installed
- first electromagnetic tests planned in 2011

KATRIN sensitivity and discovery potential

35 22.10.2010

Recent developments in β -spectroscopy

- Sterile neutrinos not disfavoured by cosmology
 - might be seen by KATRIN
 - if mass of v_s is large enough (for instance LSND neutrinos)
 - mixing with \overline{v}_e is large enough

New ideas

- **Project 8**: measures E_{β} via cyclotron radiation

Monreal, Formaggio, Phys. Rev. D80, 051301(R) (2009)

- search for **ultra-low Q value** isotopes Kopp, Merle: arXiv: 0911.3329v2
 - decay in excited daughter states
 - partial ionization of parent isotope
- radioactive ions in storage ring
- ultra-cold atoms in trap (E_{β} , p_{β} , p_{rec})
- direct mass difference and heat

Riis, Hannestad: arXiv: 1008.1495

Hamann et al.: arXiv: 1006.5276

Jerkins et al.: arXiv: 0901.3111v4

Matsuzaki et al.: arXiv: 0908.4163v3

Lindroos et al.: arXiv: 0904.1089

Conclusions

- Three methods to determine the neutrino mass
 - cosmology (LSS, CMB, BBN)
 - currently most sensitive probe to m_{v₁}
 - model dependent
 - no access to source (relic neutrinos, other HDM non-SM particles ?)
 - next generation: $\Sigma m_i < 0.1 \text{ eV} (0.05 \text{ eV})$
 - $2\beta 0\nu$
 - very sensitive
 - model dependent (nuclear matrix element, non-SM couplings ?)
 - next generation: $m_{\beta\beta} = \Sigma |U_{ej}|^2 e^{i\alpha} m_j < 0.1 \text{ eV} (0.05 \text{ eV})$
 - $-\beta$ -decay
 - sensitivity reached limit, new ideas needed
 - not model dependent (kinematics)
 - next generation: $m_{\beta} = (\Sigma |U_{ej}|^2 m_j^2)^{1/2} < 0.2 \text{ eV} (0.1 \text{ eV} ?)$
- methods complement one another (Σm_i , $m_{\beta\beta}$, m_{β})
- next decade should become very interesting for m_v

38 22.10.2010

J. Wolf: Absolute neutrino mass measurement

Discussion

Current and future double β decay experiments

NuFact 2010, Mumbai / India

KIT - Institute of Experimental Nuclear Physics

MIBETA (Milano/Como) experiment: the detectors

46 22.10.2010

MANU experiment (Genoa)

KATRIN @ Karlsruhe

- high molecular tritium purity:
- flow rate:
- column density pd:
 - Ø temperature stability
- magnetic field strength:
- tritium flow reduction:

```
5 \times 10^{19} molecules/s ± 0.1% (40 g T<sub>2</sub>/day)
5 \times 10^{17} molecules/cm<sup>2</sup> ± 0.1%
```

0,1 %

> 95 %

WGTS: 3.6 T ± 2% DPS/CPS: 5.6 T

10¹⁴ (DPS and CPS): 10⁻²⁰ mbar in M.S.

Design of the main spectrometer

J. Wolf: Absolute neutrino mass measurement

53

Requirements for the vacuum system

- final pressure: < 10⁻¹¹ mbar
- outgassing: < 10⁻¹² mbar l/s cm² (innere surface: 690 m²)
- effective pumping speed
 - 3000m getter strips: 1 000 000 l/s (H₂ and other active gases)
 - 6 turbo-molecular pumps: 8 400 l/s (all gases)
- max. allowed gasload ۲
 - H₂ < 10⁻⁵ mbar l/s
 - outgassing vessel: <6 x 10⁻⁶ mbar l/s
 - outgassing electrodes: <3 x 10⁻⁶ mbar l/s
 - 6 TMPs, beamline, gauges: < 10⁻⁶ mbar l/s
- - non-getterable gases < 10⁻⁷ mbar l/s (hydrocarbons, noble gases,...)

55 22.10.2010

NuFact 2010, Mumbai / India

KIT - Institute of Experimental Nuclear Physics

Statistics

Systematic uncertainties

any unaccounted variance σ^2 leads to negative shift of m_v^2 : $\Delta m_v^2 = -2 \sigma^2$

- 1. inelastic scatterings of ß's inside WGTS
 - requires dedicated e-gun measurements, unfolding techniques for response fct.
- 2. fluctuations of WGTS column density (required < 0.1%)
 - rear detector, Laser-Raman spectroscopy, T=30K stabilisation, e-gun measurements
- 3. transmission function
 - spatial resolved e-gun measurements
- 4. WGTS charging due to remaining ions (MC: ϕ < 20mV) inject low energy meV electrons from rear side,
 - diagnostic tools available
- 5. final state distribution
 - reliable quantum chem. calculations
- 6. HV stability of retarding potential on ~3ppm level required - precision HV divider (PTB), monitor spectrometer beamline

some contributions each with $\Delta m_v^2 \le 0.007 \text{ eV}^2$

Project 8 collaboration

- Cyclotron radiation from T₂
- first prototype at UW, Seattle

