Systematics in Reactor Neutrino Oscillation Experiments

Karsten M. Heeger

University of Wisconsin

Outline

- Measuring reactor antineutrinos
- Reactor neutrino oscillation measurements: status and prospects
- From one to multiple detectors
- Near-far detector concept
- Systematics in reactor experiments
 - reactor site
 - detector
 - backgrounds
- Sensitivity of future reactor experimenrs

Neutrino Physics at Reactors

Next - Discovery and precision measurement of θ_{13}

Daya Bay Double Chooz Reno

History of reactor neutrino research

2008 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

 2004 - Evidence for spectral distortion
 2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

 KamLAND

 Past Reactor Experiments

 Hanford

 Savannah River

Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

from the first discovery to precision physics

Discovery of the Neutrino

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

Antineutrino Detection

inverse beta decay $v_{P} + p \rightarrow e^{+} + n$

coincidence signature

prompt e⁺ and delayed neutron capture

including E from e⁺ annihilation, $E_{prompt}=E_{\overline{v}}$ - 0.8 MeV

Reactor Antineutrinos

mean energy of \overline{v}_e : 3.6 MeV only disappearance expts possible

cross-section accurate to +/-0.2%

time-dependent rate and spectrum

Measurement of Reactor Spectra

Goesgen Experiment (1980's)

comparison of predicted spectra to observations

two curves are from fits to data and from predictions based on Schreckenbach et al.

3 baselines with one detector

flux and energy spectrum agree to $\sim 1-2\%$

reactors are calibrated source of \overline{v}_e 's

Oscillation Experiments with Reactors

Reactor experiments look for non-1/r² behavior of antineutrino interaction rate

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

for 3 active neutrinos, can study oscillation with two different oscillation length scales: Δm^{2}_{12} , Δm^{2}_{13}

$$\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$$

 $\Delta m_{23}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$
 $L \sim 60 \text{ km}$
 $L \sim 1.8 \text{ km}$

 $\Delta m_{13}^2 \sim \Delta m_{23}^2$ search for θ_{13} at baseline of ~ 1.8km

- look for rate deviations from 1/r² and spectral distortions
- baselines relatively short, no matter effects
- Mean antineutrino energy is 3.6 MeV, only disappearance experiments possible $\overline{v_e} \rightarrow \overline{v_e}$.

Oscillation Search at Baseline of 1km

Oscillation Search at Baseline of 1km

Chooz (19	98)		
thermal pow 1 km baselir	ver 8.5 GW	\overline{v}_{e} \overline{v}_{e} \overline{v}_{e} \overline{v}_{e}	systematic uncertainty on
			normalization
		parameter	relative error $(\%)$
a pely		reaction cross sectio	on 1.9%
		number of protons	0.8%
		detection efficiency	1.5%
	target	reactor power	0.7%
- A Shin		energy released per	fission 0.6%
	The second secon	combined	2.7%

systematic limitations on absolute measurement:

1. reactor power

- 2. reaction cross-section
- 3. detection efficiency

Oscillation Search at Baseline of 1km

systematic limitations on absolute measurement:

- 1. reactor power
- 2. reaction cross-section
- 3. detection efficiency

- cancels with independent normalization of reactor source
- cancels if we compared un-oscillated and oscillated antineutrino flux

Oscillation Search at (Average) Baseline of 180km

KamLAND (2003-present)

Prompt event energy spectrum for \overline{v}_e

significance of disappearance (with 2.6 MeV threshold): 8.5σ no-osc χ^2 /ndf=63.9/17

significance of distortion: > 5σ best-fit χ^2 /ndf=21/16 (18% C.L.)

systematic uncertainties: fiducial volume reduced from $4.7\% \rightarrow 1.8\%$

total systematics: 4.1%

	Detector-related (%)		Reactor-related (%)	
Δm_{21}^2	Energy scale	1.9	$\overline{\nu}_e$ -spectra [7]	0.6
Event rate	Fiducial volume	1.8	$\overline{\nu}_e$ -spectra	2.4
	Energy threshold	1.5	Reactor power	2.1
	Efficiency	0.6	Fuel composition	1.0
	Cross section	0.2	Long-lived nuclei	0.3

how to improve reactor neutrino measurements:

- 1. eliminate reactor source systematics
- 2. reduce detector fiducial volume error

Events / 0.425 MeV

Next Generation Reactor Experiments

Applying the Lessons Learned from Chooz and KamLAND

- 1. Normalize flux from reactor source with near detectors
- 2. Identical detectors near and far
- 3. Detectors without fiducial volume cut

Karsten Heeger, Univ. of Wisconsin

Reactor θ_{13} Experiment at Krasnoyarsk, Russia

Original Idea: First proposed at Neutrino2000

Multi-detector Reactor θ₁₃ Neutrino Experiments

Daya Bay - most precise experiment <u>- only</u> experiment to reach sin²2θ₁₃ < 0.01 Use Daya Bay as example for discussion of issues that are common to reactor θ_{13} experiments.

Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

Karsten Heeger, Univ. of Wisconsin

Reactor Source

Multiple Reactor Sources

Reactor Power Fluctuation in Multiple Reactor Cores

(Daya Bay near) + Ling Ao near

Far

2% uncertainty per core in reactor power → residual systematic uncertainty is < 0.1% Daya Bay uses 6 reactors and 8 detectors (48 baselines)

can analyze near-far pairs of detectors

Daya Bay Antineutrino Detectors

Detector Design

- 8 "identical", 3-zone detectors
- no position reconstruction, no fiducial cut

Karsten Heeger, Univ. of Wisconsin

Daya Bay Antineutrino Detectors

Antineutrino Detection

Signal and Event Rates

Daya Bay near site	840
Ling Ao near site	740
Far site	90

events/day per 20 ton module

$$\overline{v}_{e} + p \rightarrow e^{+} + n$$

$$0.3 b \qquad \rightarrow + p \rightarrow D + \gamma (2.2 \text{ MeV}) \quad (\text{delayed})$$

$$49,000 b \rightarrow + \text{Gd} \rightarrow \text{Gd}^{*} \rightarrow \text{Gd} + \gamma \text{'s (8 MeV) (delayed)}$$

Prompt Energy Signal

Delayed Energy Signal

Antineutrino Detector Performance

Detection Efficiencies

Geant4-based simulations

Prompt e⁺ Signal

1 MeV cut for prompt positrons: >99%, uncertainty negligible

Delayed n Signal

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty

Detector-Related Uncertainties

		Absolute measureme	Rela nt mea	tive suremen	t	
Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons		0.8	0.3	0.1	0.006	
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	<0.01	<0.01	<0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	
					Ref: Daya Bay TDF	

O(0.2-0.3%) precision for relative measurement between detectors at near and far sites

Ref: GLOBES McFarlane, Wisconsin

- near-far detector concept largely cancels source and detector systematics
- knowledge of reactor source is still helpful

and what about backgrounds?

Daya Bay Background Summary

	DYB site	LA site	far site
Antineutrino rate (/day/module)	840	760	90
Natural radiation (Hz)	<50	<50	<50
Single neutron (/day/module)	18	12	1.5
β -emission isotopes (/day/module)	210	141	14.6
Accidental/Signal	<0.2%	<0.2%	<0.1%
Fast neutron/Signal	0.1%	0.1%	0.1%
⁸ He ⁹ Li/Signal	0.3%	0.2%	0.2%

backgrounds from beta-delayed neutron emission isotopes ⁸He and ⁹Li will have to be measured and subtracted

Expected Precision to $\overline{v_e}$ Flux

Expected Precision and Sensitivity of Daya Bay

Daya Bay Sensitivity to $sin^2 2\theta_{13}$

sin²2θ₁₃ < **0.01 @ 90% CL** in 3 years of data taking 2011 start data taking withnear site2012 start data taking with fullexperiment

Summary and Outlook

Summary and Outlook

Reactor Related Systematic Uncertainty

For multi cores, **reweight oversampled** cores to maximize near/far cancellation of the reactor power fluctuation.

$$\frac{\text{Near}}{\text{Far}} = \alpha \frac{\text{Near1}}{\text{Far}} + \frac{\text{Near2}}{\text{Far}}$$

Assuming 30 cm precision in core position

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Systematic Errors from the Reactor Site

Reactor Power Fluctuation in Multiple Reactor Cores

(Daya Bay near) + Ling Ao near

Far

2% uncertainty per core in reactor power \rightarrow residual systematic uncertainty is < 0.1%

Cosmogenic Backgrounds

Using Monte Carlo estimate how well background can be estimated from data using only time since last muon.

⁸He/⁹Li $\sigma < 0.2\%$

Calculate muon rate underground using surface distributions and MUSIC simulations.

Using measured cross section for production of ⁹Li and ⁸He at 190 GeV and scaling with $\sigma \sim E^{0.73}$, obtain an estimated production rate.

See poster by C. Jillings

Antineutrino Detector Overview

Detector Top/Bottom Reflectors

specular reflectors consist of ESR® high reflectivity film on acrylic panels

reflector flattens detector response

Energy Calibration and Efficiencies

Prompt Energy Signal

e+ threshold: stopped positron signal using ⁶⁸Ge source (2x0.511 MeV)
e+ energy scale: 2.2 MeV neutron capture signal (n source, spallation)

1 MeV cut for prompt positrons: >99%, uncertainty negligible

Delayed Energy Signal

reconstructed neutron (delayed) capture energy spectrum

6 MeV threshold: n capture signals at 8 and 2.2 MeV (n source, spallation)

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty

Antineutrino Detector Event Distributions

Detector Calibration

automated calibration system

→ routine weekly deployment of sources

LED light sources

→ monitoring optical properties

e+ and n radioactive sources (=fixed energy)

→ energy calibration

⁶⁸Ge source Am-C + ⁶⁰Co source LED diffuser ball

Karsten Heeger, Univ. of Wisconsin

NuFact10, October 23, 2010

tagged cosmogenic background (free)

 \rightarrow fixed energy and time

 $\sigma/E = 0.5\%$ per pixel requires: 1 day (near), 10 days (far)

Muon Veto System

RPCs: muon detect efficiency 98.6% and ~0.5m spatial resolution. **Two-layer water pool:** 962 PMTs, >2.5m water shield for neutron background, ~0.5m spatial resolution

Daya Bay veto system provides a combined muon detection efficiency > 99.5%.

Systematic Uncertainties

	Detector-related (%)		Reactor-related (%)	
Δm_{21}^2	Energy scale	1.9	$\overline{\nu}_e$ -spectra [7]	0.6
Event rate	Fiducial volume	1.8	$\overline{\nu}_{\theta}$ -spectra	2.4
	Energy threshold	15	Reactor power	2.1
	Efficiency	0.6	Fuel composition	1.0
	Cross section	0.2	Long-lived nuclei	0.3

fiducial volume systematics reduced from $4.7\% \rightarrow 1.8\%$

total systematics: 4.1%

Estimated Backgrounds

TABLE II: Estimated backgrounds after selection efficiencies.

