T2K Oscillation Strategies

Kevin McFarland (University of Rochester) on behalf of the T2K Collaboration

Neutrino Factories 2010 October 24th 2010

The Actual Title

• After I arrived, I found out that my actual talk title was "Near to Far, T2K Style"

The Actual Title

• After I arrived, I found out that my actual talk title was "Near to Far, T2K Style"

• This is all I could think of to fit that title. It's a long trip from near T2K to my far away home...

The T2K Experiment

K. McFarland, T2K Oscillation Strategy

The T2K (Tokai to Kamioka) Experiment

295 km

Super-K

The Super-Kamiokande detector

Kamioka

Japan Proton Accelerator Research Complex

Tokai

24 October 2010

JPARC

Characteristics of T2K

- High intensity beam
- Off-axis detectors:
 - The detectors are at 2.5° off-axis from the beam, which tunes the ν energy and shape.
- A massive, well understood, far detector SK.
- A complex suite of near detectors:
 - INGRID is on-axis for beam direction monitoring.
 - ND280 has multiple sub-detectors and regions, focused on specific backgrounds at SK.

JPARC Beam

- Protons collide with a graphite target, producing charged pions.
 - Design 30 GeV, 750 kW
- The positive pions are focused by horns, and enter the decay volume.
 - The decay produces $\nu_{\!\scriptscriptstyle \mu}$ and $\mu^{\!\scriptscriptstyle +}$
 - The length is tuned, to minimize the number of μ^{t} that decay, producing anti- v_{μ} .

Off-axis Design

- The detectors are placed off-axis from the beam.
 - 1^{st} oscillation maximum @ $E_v \sim 0.6$ GeV.
 - Beam peak ~ 0.7 GeV, CCQE interaction dominates, allows E reconstruction.
- The angle can be varied from 2.5° to 2.0° off-axis.

Goals of T2K

Oscillation Goals

- T2K will make two oscillation measurements
- v_{μ} disappearance:
 - Observe a deficit of v_{μ} in the beam at Super-K.
 - Improved measurements on θ_{23} and Δm^2_{32} .
- v_e appearance:
 - Search for increased $\nu_{\rm e}$ in the beam at Super-K
 - If found, would establish non-zero θ_{13}
 - With other measurements, may probe mass hierarchy and $\boldsymbol{\delta}$

- # of observed events @ SK $Nv_e^{SK} = P(v_\mu \rightarrow v_e) \times \Phi^{SK}(v_\mu) \times \sigma(v \text{ int. water})$
- $\Phi^{SK}(v_{\mu}) \times \sigma(v \text{ int.}) = R(SK/ND) \times \Phi^{ND}(v_{\mu}) \times \sigma(v \text{ int. water})$ = $R(SK/ND) \times Nv_{\mu}^{ND}$ Near Detector Measurement
- R(SK/ND) : Far to Near flux ratio
 - Estimated from simulation, using measurements from beam monitors and CERN NA61.

Eventual v_e Appearance Sensitivity

24 October 2010

K. McFarland, T2K Oscillation Strategy

Statistical and Systematic Uncertainties

Anticipated Systematics $\nu_{\mu} \rightarrow \nu_{e}$

- Intrinsic v_e in beam (60% of background)
- Fake e⁻ in far detector (e.g., NC π^0) (40% of background)
- If oscillation probability is large, will eventually limited by signal eff. (fiducial volume, energy reconstruction of v_e events)
- S/N of 1:1 corresponds to $\sin^2 2\theta_{13} \sim 0.02$
 - Analysis goal is to keep fractional uncertainty on each background source to 10%

Accepted v_{μ}			Accepted Beam v_e Signal v_e						
$beam\nu_{\mu}$	Frac.		$beam\nu_e$	Frac.		signal ν_e	Frac.		
NC1 ⁿ ^o	77 %		1e	94.6 %		1e	98.5%	(
NC1n [±]	8.6%		1e + 1p±	2.6%		1e + 1p±	1.5%		
ΝC1γ	5.2 %		1e + 1P	0.4%				-	
NC other	6.0 %		NC	2.4%	S	Systematic error of $1\pi^0$ and			
CC	3.8%				1	1e efficiencies are important			

24 October 2010

K. McFarland, T2K Oscillation Strategy

Anticipated Systematics $\nu_{\mu} \rightarrow \nu_{\mu}$

- Disappearance $\nu_{\!\scriptscriptstyle \mu} \to \nu_{\!\scriptscriptstyle \mu}$
 - Beam energy, normalization
 - Detector fiducial volumes and energy scales
 - Non-QE background in Super-K

Design Report Era Systematics								
Event Normalization	Red	10%						
Background (non-QE)	Green	20%						
Energy Scale	Blue	4%						
Spectrum Shape (linear)	Purple	20%						
Spectrum Peak Width	Lt. Blue	10%						

24 October 2010

K. McFarland, T2K Oscillation Strategy

T2K Analysis Strategy

- We plan to bring overwhelming force on multiple fronts to beat down systematics, perhaps out of proportion to their actual impact
- Our tools of choice

Systematic uncertainties place flowers in rifles of T2K Collaborators outside the US Pentagon (1967), (photo: Bernie Boston)

- Experimental design: primarily off-axis beam, partial cancellations from near-to-far comparisons
- "Redundant" methods: build complete data-based models for beam, neutrino interactions, detectors to cross-compare and study systematics

Example: Flux Tuning

- Beam simulation gives a prediction for flux
 - Protons monitors provide initial proton direction
 - Hadron production tuned for consistency with NA61 (T2K target replica) data
 - Muon monitor crosscheck
- INGRID (on axis) detector determines beam direction
 - Rate also constrains flux

- Off-axis near detector flux can be used with near/far ratio or "matrix method"
 - May also be used to tune beam simulation

Example: ND280 Data

- ND280 off-axis detectors measure NC π^{o} and ν_{μ} CCQE on Water
 - Both of these can be predicted in an interaction model
 - Tune interaction model to reproduce observation in ND280
- Interaction model then gives a prediction for background with flux at Super-K

- Tuning of cross-sections will actually be much more comprehensive
 - ND280 can reconstruct a broad variety of final states

Summary

Prospects for 2011

- Next run starts Nov 2010
- We are planning for a run with 150 kW \times 10⁷s by July 2011
 - Sensitivity to $\sin^2 2\theta_{13} \sim 0.05$
- The early appearance results
 are still statistics limited
 - Disappearance results will be more affected
 - We'll have time to explore these techniques and see which are the most effective

