DAEδALUS Experiment

Zelimir Djurcic Argonne National Laboratory

NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams and Beta Beams October 20-25, 2010. Mumbai, India

$\begin{array}{l} DAE\delta ALUS\\ Decay-At-rest Experiment for \delta_{CP} studies\\ At the Laboratory for Underground Science \end{array}$

 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ search, exploiting the L/E dependence of the CP-interference term to extract δ . Complementary to LBNE:

- -High Statistics
- -Low Background
- -No matter effects

References:

J. Conrad and M. Shaevitz, PRL 104, 141802 (2010).

Expression of Interest for A Novel Search for CP Violation in the Neutrino Sector: DAEδALUS, arXiv: 1006.0260.

A Study of Detector Configurations for the DUSEL CP Violation Searches Combining LBNE and DAEdALUS, arXiv: 1008.4967 (submitted to PRD).

J. Alonso¹³, F.T. Avignone¹⁸, W.A. Barletta¹³,
R. Barlow⁵, H.T. Baumgartner¹³, A. Bernstein¹¹, E. Blucher⁴,
L. Bugel¹³, L. Calabretta⁹, L. Camilleri⁶, R. Carr⁶,
J.M. Conrad^{13,*}, S.A. Dazeley¹¹, Z. Djurcic², A. de Gouvêa¹⁷,
P.H. Fisher¹³, C.M. Ignarra¹³, B.J.P. Jones¹³, C.L. Jones¹³,
G. Karagiorgi¹³, T. Katori¹³, S.E. Kopp²⁰, R.C. Lanza¹³,
W.A. Loinaz¹, P. McIntyre¹⁹, G. McLaughlin¹⁶, G.B. Mills¹²,
J.A. Nolen², V. Papavassiliou¹⁵, M. Sanchez^{2,10}, K. Scholberg⁷,
W.G. Seligman⁶, M.H. Shaevitz^{6,*}, S. Shalgar¹⁷, T. Smidt¹³,
M.J. Syphers¹⁴, J. Spitz²², H.-K. Tanaka¹³, K. Terao¹³,
C. Tschalaer¹³, M. Vagins^{3,21}, R. Van de Water¹²,
M.O. Wascko⁸, R. Wendell⁷, L. Winslow¹³

¹Amherst College, Amherst, MA 01002, USA ²Argonne National Laboratory, Argonne, IL 60439, USA ³University of California, Irvine, CA 92697, USA ⁴University of Chicago, Chicago, IL 60637, USA ⁵The Cockcroft Institute for Accelerator Science & the University of Manchester, Oxford Road, Manchester M13 9PL, UK ⁶Columbia University, New York, NY 10027, USA ⁷Duke University, Durham, NC 27708, USA ⁸Imperial College London, London, SW7 2AZ, UK ⁹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, I-95123, Italy ¹⁰Iowa State University, Ames, IA 50011, USA ¹¹Lawrence Livermore National Laboratory, Livermore, CA 94551, USA ¹²Los Alamos National Laboratory, Los Alamos, NM 87545, USA ¹³Massachusetts Institute of Technology, Cambridge, MA 02139, USA ¹⁴Michigan State University, East Lansing, MI 48824, USA ¹⁵New Mexico State University, Las Cruces, NM 88003, USA ¹⁶North Carolina State University, Raleigh, NC 27695, USA ¹⁷Northwestern University, Evanston, IL 60208, USA ¹⁸University of South Carolina, Columbia, SC 29208, USA ¹⁹Texas A&M University, College Station, TX 77843, USA ²⁰University of Texas, Austin, TX 78712, USA ²¹University of Tokyo, Kashiwa, 277-8583, Japan ²²Yale University, New Haven, CT 06520 USA

Large neutrino flux covering 1st and 2nd oscillation max points (0.8 and 2.4 GeV). Fairly pure ν_{μ} flux with small ν_{e} contamination.

Minimize flux with energy above 5 GeV that causes background.

However,

Still substantial neutral current π^0 events that mimic ν_e events.

Difficult to collect large antineutrino statistics.

Antineutrino running has significant neutrino contamination.

Come up with an improved source for antineutrinos \Rightarrow DAE δ ALUS

Daedalus Experiment

-Multiple beam sources using high-power cyclotrons.

-Cyclotron beam impinges on dump where produced $\pi^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle +}$ decay to

neutrinos (almost all π - capture before decay).

 \rightarrow Very few $\overline{\nu_e}$ produced so can do precise $\overline{\nu_{\mu}} \rightarrow \overline{\nu_e}$ search.

For study assume each cyclotron 1 MW at some proton energy in 0.6 to 1.4 GeV range.
Detector is assumed to be 300 kton water Cerenkov detector with gadolinium doping.
Osc signal events are vertexe + p → e⁺ + n (Inverse-beta decay) which can be well identified by a two part delayed coincidence.

-Flux normalization can be determined by using ~15,000 $v_e + e^- \rightarrow v_e + e^-$ events.

5

Neutrino Beam Production

Proton beam produces pions in a carbon plus copper beam dump: Protons $\rightarrow \pi^+ (\text{stop}) \rightarrow \mu^+ + \nu_{\mu}$ $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$ $\rightarrow \pi^- (\text{captures before decay})$

Energy Spectrum for π^+ Decay-at-Rest Beam (No uncertainty in energy spectrum)

Neutrino Beam Production

Proton beam produces pions in a carbon plus copper beam dump:

Protons
$$\rightarrow \pi^+ (\text{stop}) \rightarrow \mu^+ + \nu_{\mu}$$

 $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$
 $\rightarrow \pi^- \text{(captures before decay)}$

(options with times on/off with 1ms/4ms studied)

7

Event Types in Water Detector

 $\overline{\nu_{u}} \rightarrow \overline{\nu_{e}}$ then $\overline{\nu_{e}} + p \rightarrow e^{+} + n$ (IBD events)

& other ve scattering diagrams -- essential to normalization. (Also $v_{\mu}e$ and $\overline{v}_{\mu}e$)

Lower than IBD by ×10 because of binding, & no associated n Used for relative normalization of different distances

Will not reconstruct as an IBD event

Measurement Strategy

Beam Requirements

Need high intensity proton beams with 600 to 1500 MeV to maximize pion production (in the "Delta Plateau" region).

Best candidate is high-power superconducting cyclotrons.

– Being developed for:

"ADS" – accelerator driven systems for subcritical reactors.

"DTRA"- Defense Threat Reduction Agency \rightarrow Homeland security apps.

A year-long study of 3 cyclotron designs has begun

The compact cyclotron with self-extraction

under development for DTRA at MIT

Design energies under consideration: 650-1500 MeV

The stacked cyclotron:

7 cyclotrons in one

flux

return

Under dev. for ADS at TAMU

L. Calabretta et. al., "A Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector", arXiv:1010.1493 (2010). 11

J. Alonso, "The DAE&ALUS Project: Rationale and Beam Requirements", arXiv: 1010.0971 (2010).

DAE δ ALUS three-phase Run Plan

Three-phase run-plan consists of:

- 0. Learn: Run the near accelerator to learn more about operations, and make useful preliminary cross section measurements.
- 1. Discover: Run in the 1-2-3 MW configuration to discover the value of δ , while maintaining flexibility of design.
- 2. Measure: Run for the remainder of the experiment with the most optimal accelerator design.

DAE δ ALUS three-phase Run Plan

A 3-phase schedule: *learn* -- *discover* -- *measure*

Events in Detectors

Assume: 300 kton Water Cerenkov det., 10 year run.

Event samples for signal with $\sin^2 2\theta_{13} = 0.05$.

Oscillation event and bkg. distributions as Function of δ_{CP} from each accelerator.

1.5km - normal

1.5km - inverted

Bkgnd

1800

1600

1400

1200

1000

800

600

400

200

0

0

90

45

135

 δ_{CP}

Nuebar Events

Event Type	1.5 km	$8 \mathrm{km}$	20 km
IBD Oscillation Events ($E_{vis} > 20 \text{ MeV}$)			
$\delta_{CP} = 0^0$, Normal Hierarchy	763	1270	1215
", Inverted Hierarchy	452	820	1179
$\delta_{CP} = 90^{\circ}$, Normal Hierarchy	628	1220	1625
", Inverted Hierarchy	628	1220	1642
$\delta_{CP} = 180^0$, Normal Hierarchy	452	818	1169
", Inverted Hierarchy	764	1272	1225
$\delta_{CP} = 270^{\circ}$, Normal Hierarchy	588	870	756
", Inverted Hierarchy	588	870	766
IBD from Intrinsic $\overline{\nu}_e$ (E _{vis} > 20 MeV)	600	42	17
IBD Non-Beam ($E_{vis} > 20 \text{ MeV}$)			
atmospheric $\nu_{\mu}p$ "invisible muons"	270	270	270
atmospheric IBD	55	55	55
diffuse SN neutrinos	23	23	23
ν -e Elastic (E _{vis} > 10 MeV)	21570	1516	605
ν_e -oxygen (E _{vis} > 20 MeV)	101218	7116	2840

Events in Detectors

Assume: 300 kton Water Cerenkov det., 10 year run.

Event energy distributions for signal and background at $\sin^2 2\theta_{13} = 0.04$.

250

200

150

100

MeV

signal accelerators (left) 8 km, (right) 20 km.

DAE
 ALUS Sensitivity

One (inner contour) and two (outer contour) σ sensitivities for DAE δ ALUS Phase 1 and 2 combined (10 years of running).

Phase-1 and Combined-phase 1+2 sensitivity to θ_{13} at 3σ and 5σ .

DAE
 ALUS Sensitivity

One (inner contour) and two (outer contour) σ sensitivities for DAE δ ALUS Phase 1 and 2 combined (10 years of running).

DAE δ ALUS is not sensitive to matter effects \Rightarrow degeneracy between two mass hierarchies.

 δ_{CP} scale for normal hierarchy shown on the left, inverted on the right.

DAE δ ALUS can determine if there is CP violation (i.e. $\delta_{CP} \neq 0$ or 180°) without knowing hierarchy.

LBNE Sensitivity

LBNE expected events (E[GeV]) in 300 kton water Cherenkov detector at 1300 km for v (5 yr) + v (5 yr) running.

DAE δ ALUS and LBNE Complementarity

- The DAE δ ALUS signal is entirely in antineutrino mode, while the statistical strength of LBNE is in neutrino running.
- DAE δ ALUS is a short-baseline experiment with no matter effects, while LBNE is a long-baseline experiment with matter effects.
- DAEδALUS events are at low energy and in a narrow energy-window from 20 to 52.8 MeV, while LBNE has a high energy, wide-band (300 MeV to about 10 GeV) signal.
- DAEδALUS has very low backgrounds, coming mainly from beam-off sources which can be well measured from beam-off running, while LBNE has a poorer signal-to-background ratio, but with very different systematics.

As a result of the complementarity, when the two experiments are combined, the sensitivity is substantially improved.

Combining DAE δ ALUS and LBNE

Dashed: LBNE proposed running $(30 \times 10^{20} \text{ POT in } \nu \text{ mode and } 30 \times 10^{20} \text{ POT in } \overline{\nu} \text{ mode})$; Solid (Dot-dashed): the combined DAE δ ALUS plus LBNE ν -only result for 10 years (5 years).

For the LBNE input, which is affected by matter effects, we assume normal hierarchy.²⁰

Combining DAE δ ALUS and LBNE

-One (inner contour) and two (outer contour) σ sensitivities for DAE δ ALUS + (LBNE ν –10 yr) scenario. -Normal mass hierarchy assumed for LBNE. Normal mass hierarchy assumed 120

 -160°

24.5

17.7

16.8

10.6

 δ_{CP}

LBNE ν (5 yr) + $\bar{\nu}$ (5 yr)

DAE δ ALUS+LBNE ν –5 yr

 $DAE\delta ALUS+LBNE\nu$ -10 yr

DAE δ ALUS Phase 1+2

3σ Discovery of CP-violation: Comparing to Project X

Project X proposal at Fermilab would supply 100×10^{20} protons on target to LBNE beamline in a 5 year time period.

Assume a "Project-X scenario" for LBNE: 5 year run in ν mode + 5 year run in $\overline{\nu}$ mode

Region in δ_{CP} and $\sin^2 2\theta_{13}$ space over which measurement can be differentiated from 0 or 180° at 3 σ .

Normal mass hierarchy is assumed for LBNE.

Combining DAEδALUS and LBNE: Various Configurations

Consider three types of detector "units":

- -WCGd:100 kt Gd-doped water Cerenkov detector with $\approx 20\%$ high quantum efficiency
- PMT cover-age and/or light concentrators to realize good efficiency for ~5 MeV
- Cherenkov light signal expected from neutron capture on Gd.
- -WC: 100 kt water Cerenkov detector modules with 15% high quantum efficiency PMT coverage.

-LAr: 17 kt of LAr.

arXiv: 1008.4967 (submitted to PRD)

Consider three types of neutrino sources, with 10 year running-periods: -LBNE alone: $30x10^{20}$ POT in v mode + $30x10^{20}$ POT in v mode. -DAE δ ALUS alone: only v mode: 1MW at 1.5 km, 2 MW at 8 km, and 5 MW at 20 km. -DAE δ ALUS + LBNE combined: LBNE in v mode only + standard DAE δ ALUS.

Study the following configurations:

Rank	Source	Configuration	1σ error	
1.	$DAE\delta ALUS$ alone	$1 \times WCGd$	34°	
2.	LBNE alone	$3 \times WC$	25°	Comparison of
3.	LBNE alone	$2 \times WC + 1 \times LAr$	24°	configurations
4.	LBNE alone	$1 \times WC + 2 \times LAr$	23°	for $\sin^2 2\theta_{13} = 0.05$
5.	$DAE\delta ALUS$ alone	$2 \times WCGd$	22°	and $\delta_{\rm CP} = -90^\circ$.
6.	$DAE\delta ALUS + LBNE$	$1 \times WCGd + 2 \times WC$	18°	Rank=1 is worst,
7.	$DAE\delta ALUS$ alone	$3 \times WCGd$	17°	Rank=10 is best.
8.	$DAE\delta ALUS + LBNE$	$2 \times WCGd + 1 \times WC$	15°	
9.	$DAE\delta ALUS + LBNE$	$2 \times WCGd + 1 \times LAr$	15°	23
10.	$DAE\delta ALUS + LBNE$	$3 \times WCGd$	13°	

Combining DAE δ ALUS and LBNE: Various Configurations

The δ_{CP} sensitivity at 1 σ as a function of δ_{CP} for various configurations of WC, WCGd, and Lar.

Physics Opportunities with the DAE δ ALUS Near Accelerator

-The near accelerator provides a high intensity beam with very well known flux that can be used by various experiments.

-Calibration beam for LBNE.

-Beam can also be used by short baseline experiments using small detectors made of various materials.

-Coherent neutrino nucleus scattering.

-Measurement of $\sin^2\theta_w$.

-Nonstandard interactions (i.e. n mass or SUSY effects).

-Cross section measurements on various targets.

-Relevant for Supernova detection.

-Relevant for nucleosynthesis.

-Neutrino Magnetic Moment.

-Strange spin of the nucleon.

-Many opportunities for small scale experiments!

Conclusion

-DAE δ ALUS will broaden the reach of DUSEL for exploring neutrino oscillation physics and especially δ_{CP} .

-Daedalus will provide a high precision measurement of CP violation that is unique in that it utilizes antineutrinos.

- -Low backgrounds with high statistics.
- -No matter effects.
- -Combining the Daedalus antineutrino data and LBNE neutrino sample is very powerful for extracting the oscillation physics.
- -The near accelerator will also provide a large data set for:
 - -Physics studies of leptonic processes.
 - -Calibration data for the large water Cerenkov detector.
- -Technical issues:
 - -Need to develop low-cost high-power (1-3 MW) cyclotrons \rightarrow under way.
 - -Need to dope Water Cerenkov detectors with Gadolinium and have PMT coverage to detect neutron capture.

Backup Slides

Background Processes and Rates

- Non-beam IBD backgrounds (E_{vis} > 20 MeV):
 - Atmospheric $\overline{\nu}_{\mu}$ Invisible muons: $\overline{\nu}_{\mu}$ + p $\rightarrow \mu^{+}$ + n where μ^{+} is below Cherenkov threshold.
 - Atmospheric \overline{v}_e IBD events: \overline{v}_e + p → e⁺ + n
 - Diffuse supernova neutrinos

- Beam related IBD backgrounds
 - Intrinsic \overline{v}_e in beam
 - ~4 × 10⁻⁴ v_e rate
 - Beam ν_{e} in coincidence with random neutron capture
 - Estimated to be very small from Super-K rates
 - v_e-Oxygen CC scatters producing an electron
 - Subsequent neutrons from nuclear deexcitation are very small.

Systematic Uncertainties

-Before the fit

IBD from osc nuebar	Fractional Uncertainty			
eff neutron detection	0.025			
pi+ prod/proton	0.100			
Fiducial volume	0.000			
Total	0.110			
nue-e scattering				
xsec error from NuTeV sin2thW error	0.005			
2.1% escale for $e{>}10MeV$	0.010			
electron to mass ratio	0.000			
nuebar IBD missing neutron	0.000			
Total	0.011			
IBD from intrinsic nuebar from mu- decay				
pi- production	0.100			
pi- decay in flight	0.100			
mu- decay before capture	0.050			
Total	0.150			
Non-Beam background constraint from beam off				
	0.040			
nue-Oxygen scattering				
xsec error	0.200			