Outilite

New Physics Searches at near detectors of neutrino oscillation experiments

Mattias Blennow

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

October 24, 2010 @ NuFact, Mumbai, India

(Based on Antusch, MB, Fernandez-Martinez, Ota, JHEP 06(2010)068, arXiv:1005.0756)

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects	

- * ロ * * @ * * 注 * * 注 * - うへ()

Mattias Blennow

Max–Planck–Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects	

2 Current bounds and prospects

▲日 ▲雪 ▲ 画 ▲ 画 ▲ 合 ▲ 目 ▲ ろくの

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects	

2 Current bounds and prospects

3 Summary and conclusion

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors	Bounds and prospects	

2 Current bounds and prospects

3 Summary and conclusion

《曰》《御》《臣》《臣》 臣 めん(?)

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors	Bounds and prospects	Summary and conclusior
	00000	000000	

Tau appearance channel @ near detectors

- Why a near ν_{τ} detector for new physics search?
 - Low background
 - Negligible (or small) neutrino oscillations
- Drawback:
 - No guaranteed signal
- What is the sensitivity needed to compete with current bounds?

See, e.g., Summary report of MINSIS workshop in Madrid, arXiv:1009.0476

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors ○●○○○○	Bounds and prospects 0000000	

Effective field theory approach

- The Standard Model has been extremely successful
- Effective theory approach to beyond SM physics

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{d \ge 5} \frac{\mathcal{C}_d}{M^{d-4}} \mathcal{O}_d$$

At d = 5, the only effective operator is the Weinberg operator Weinberg, PRL 43 (1979) 1566

$$\mathcal{O}_5 = \phi \phi L l$$

 \implies neutrino masses

Mattias Blennow

New Physics Searches at near detectors of neutrino oscillation experiments

Max-Planck-Institut für Physik

Outline	NP @ near detectors 00●000	Bounds and prospects 0000000	

Dimension 6 operators

- Four-fermion contact operators $(4 \times 1.5 = 6)$
- For near neutrino detectors, two types are of importance
 - Two-quark two-lepton interactions (2*Q*2*L*)
 - Four-lepton interactions (4L)
- Furhtermore, there is a type of d = 6 kinetic operator inducing non-unitarity in mixing
- Have to be gauge invariant
- There are 4L and kinetic operators that do not give rise to four-charged-fermion interactions
 Bergman, Grossman, PRD 59 (1999) 093005
 Bergman, Grossman, PRD 61 (2000) 053005
 Antusch, Baumann, Fernandez-Martinez, NPB 810 (2009) 369
 Gavela et al., PRD 79 (2009) 013007
- We focus on 2Q2L

Image: A math a math

Outline	NP @ near detectors 000●00	Bounds and prospects	

Basis of operators

We use the following basis for first-generation quark operators

Buchmüller, Wyler, NPB 268 (1986) 621

$$\begin{aligned} (\mathcal{O}_{LQ}^{1})_{\alpha}{}^{\beta} &= [\overline{L}^{\beta}\gamma^{\rho}L_{\alpha}][\overline{Q}\gamma_{\rho}Q], \\ (\mathcal{O}_{LQ}^{3})_{\alpha}{}^{\beta} &= [\overline{L}^{\beta}\gamma^{\rho}\tau^{a}L_{\alpha}][\overline{Q}\gamma_{\rho}\tau^{a}Q], \\ (\mathcal{O}_{ED})_{\alpha}{}^{\beta} &= [\overline{L}^{\beta}E_{\alpha}][\overline{D}Q], \\ (\mathcal{O}_{EU})_{\alpha}{}^{\beta} &= [\overline{L}^{\beta}E_{\alpha}]i\tau^{2}[\overline{Q}U]^{T}, \end{aligned}$$

• Each operator is assumed to be present in the Lagrangian with a coefficient $2\sqrt{2}G_FC$

Outline	NP @ near detectors 0000●0	Bounds and prospects	

Effects on τ decays

- $\hfill\blacksquare$ We need to derive the current bounds on the coefficients ${\cal C}$
- Naturally, to produce near-detector *τ*s, we need to involve *τ*s in flavor indices
- We use $\tau \to \ell \Pi$ decays, where $\ell = e, \mu$ and Π is a meson
- The involved matrix elements are

$$\mathcal{M} = \left\langle \ell \Pi \left| \mathcal{L}_{d=6} \right| \tau \right\rangle$$

Mattias Blennow

Outline	NP @ near detectors	Bounds and prospects	
	000000		

Constraining processes 2L2Q

Process	Prefactor	Relevant combination of coefficients	BR bound
$\tau \rightarrow \ell \rho$	1.7	$\left \mathcal{C}_{LQ}^{3}\right ^{2}$	6.8.10 ⁻⁸ 6.3.10 ⁻⁸
$\tau \rightarrow \ell \omega$	1.4	$\left \mathcal{C}_{LQ}^{1}\right ^{2}$	8.9.10 ⁻⁸ 1.1.10 ⁻⁷
$\tau \rightarrow \ell \phi$	0.84	$\left \mathcal{C}_{LQ'}^{1}+\mathcal{C}_{LQ'}^{3}\right ^{2}$	$\frac{1.3 \cdot 10^{-7}}{7.3 \cdot 10^{-8}}$
$\tau \rightarrow \ell \pi$	0.69	$\left \mathcal{C}_{LQ}^{3}+\tfrac{\omega_{\tau}}{2}\left[\mathcal{C}_{ED}-\mathcal{C}_{EU}\right]\right ^{2}+\tfrac{\omega_{\tau}^{2}}{4}\left \mathcal{C}_{ED}^{\dagger}-\mathcal{C}_{EU}^{\dagger}\right ^{2}$	$1.1 \cdot 10^{-7}$ $8.0 \cdot 10^{-8}$
$ au ightarrow \ell\eta$	0.20	$\begin{split} & \left \mathscr{F}_{+} \mathcal{C}_{LQ}^{1} - \left[\mathcal{C}_{LQ'}^{1} + \mathcal{C}_{LQ'}^{3} \right] \right. \\ & \left. + \frac{3m_{\eta}^{2}}{4m_{p}m_{\tau}} \mathscr{F}_{-} \left\{ \frac{1}{2} \mathscr{F}' \left[\mathcal{C}_{EU} + \mathcal{C}_{ED} \right] - \mathcal{C}_{ES} \right\} \right ^{2} \\ & \left. + \left(\frac{3m_{\eta}^{2}}{4m_{p}m_{\tau}} \right)^{2} \mathscr{F}_{-}^{2} \left \frac{1}{2} \mathscr{F}' \left[\mathcal{C}_{EU}^{\dagger} + \mathcal{C}_{ED}^{\dagger} \right] - \mathcal{C}_{ES}^{\dagger} \right ^{2} \end{split}$	<u>8.5:10-8</u> 9.2:10-8
$\tau \to \ell \pi^+ \pi^-$	0.081	$\left \mathcal{C}_{ED}-\mathcal{C}_{EU} ight ^{2}+\left \mathcal{C}_{ED}^{\dagger}-\mathcal{C}_{EU}^{\dagger} ight ^{2}$	$2.9.18^{-7}_{-7}$
$\tau \rightarrow \ell K^+ K^-$	0.014	$\left \mathcal{C}_{EU}-\mathcal{C}_{ES} ight ^{2}+\left \mathcal{C}_{EU}^{\dagger}-\mathcal{C}_{ES}^{\dagger} ight ^{2}$	$2.5.10^{-7}$ $1.4.10^{-7}$
$\tau \rightarrow \ell K^0 \bar{K}^0$	0.014	$ \mathcal{C}_{\textit{ED}} + \mathcal{C}_{\textit{ES}} ^2 + \left \mathcal{C}_{\textit{ED}}^{\dagger} + \mathcal{C}_{\textit{ES}}^{\dagger}\right ^2$	$3.4.10^{-6}$ $2.2.10^{-6}$

$$\begin{split} \omega_{\tau} &\equiv \frac{m_{\pi}}{m_{\tau}} \frac{m_{\pi}}{m_{u} + m_{d}} \\ \mathscr{F}_{\pm} &\equiv \frac{F_{\eta}^{8} \pm \sqrt{2}F_{\eta}^{0}}{F_{\eta}^{8} - \frac{1}{\sqrt{2}}F_{\eta}^{0}} \\ \mathscr{F}' &\equiv \frac{F_{\eta}^{8} + 2\sqrt{2}F_{\eta}^{0}}{F_{\eta}^{8} - \sqrt{2}F_{\eta}^{0}} \end{split}$$

BR bounds from PDG

Mattias Blennow

Max–Planck–Institut für Physik

Image: Image:

Outline	Bounds and prospects	Summary and conclusion

2 Current bounds and prospects

3 Summary and conclusion

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects ●000000	

Our appoach

- We make a Markov Chain Monte Carlo (MCMC) to scan the paramter space
- \blacksquare We use the current bounds on LFV τ decays from the PDG as priors

Amsler et al., PLB 667 (2008) 1

- We use the resulting distributions to derive the bounds on the operator coefficients
- For the MCMC, we use the MonteCUBES software

MB, Fernandez-Martinez, Comput. Phys. Commun. 181 (2010) 227

Mattias Blennow

Max-Planck-Institut für Physik

Outline		Bounds and prospects	
	000000	000000	

Illustrative example

- For illustration, assume C is real and $C_{EX} = C_{FX}^T$
- Constraints from decays are ellipsoids in the parameter space

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects 00●0000	

Correlations

Depending on the combinations appearing in the decay formulae, there can be correlations between coefficients

Mattias Blennow

New Physics Searches at near detectors of neutrino oscillation experiments

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects	

Operator constraints

Operator	$(\mathcal{C}^1_{LQ})_lpha^ au$	$(\mathcal{C}_{LQ}^3)_{lpha}^{\ au}$	$(\mathcal{C}_{ED})_{lpha}^{\ au}$	$(\mathcal{C}_{EU})_{\alpha}^{\tau}$	$({\cal C}^{\dagger}_{\it ED})_{lpha}{}^{ au}$	$({\cal C}^{\dagger}_{EU})_{lpha}{}^{ au}$
$\alpha = \mu$	$2.1 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$7.2 \cdot 10^{-4}$	$7.2 \cdot 10^{-4}$	$6.2 \cdot 10^{-4}$	$6.2 \cdot 10^{-4}$
$\alpha = e$	$2.4 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$	$6.9 \cdot 10^{-4}$	$7.1 \cdot 10^{-4}$	$6.0 \cdot 10^{-4}$	$6.1 \cdot 10^{-4}$

• Bounds are generally $\mathcal{O}(10^{-4})$

Implies reach for probability must generally be $\mathcal{O}(10^{-6}-10^{-8})$

... however

Outline	NP @ near detectors 000000	Bounds and prospects 0000●00	

Pion chirality enhancement

Normally, the decay of charged pions is chirality suppressed
 Not the case with C[†]_{ED} and C[†]_{EU}

$$\Gamma(\pi^+ \to \nu_\tau \mu^+) = \left| 2(\mathcal{C}_{LQ}^3)_{\mu}^{\ \tau} + \omega_\mu \left[(\mathcal{C}_{ED}^\dagger)_{\mu}^{\ \tau} - (\mathcal{C}_{EU}^\dagger)_{\mu}^{\ \tau} \right] \right|^2 \Gamma(\pi^+ \to \nu_\mu \mu^+)$$

$$m_\pi \qquad m_\pi \qquad \text{a.s.}$$

$$\omega_{\mu} = \frac{m_{\pi}}{m_{\mu}} \frac{m_{\pi}}{m_{u} + m_{d}} \simeq 21$$

Results in

$$\mathcal{R} = rac{\mathsf{\Gamma}(\pi^+
ightarrow
u_ au \mu^+)}{\mathsf{\Gamma}(\pi^+
ightarrow
u_\mu \mu^+)} < 7.9 \cdot 10^{-5}$$

• CHORUS: $\mathcal{R} < 1.63 \cdot 10^{-4}$, NOMAD: $\mathcal{R} < 2.2 \cdot 10^{-4}$

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects 00000●0	

Standard oscillation interference

As an example, non-unitarity with $\varepsilon_{\mu\tau} = 10^{-3}$ (\sim upper bound)

CP-violation could be observable through interference term

See also Fernandez-Martinez et al., PLB 649 (2007) 427

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects 000000●	

Probability constraints

 Must consider coherent sum of all possible processes including both source and detector

Beam (channel)	2L2Q	4 <i>L</i>	NU
$\pi \ (\mu ightarrow au)$	$7.9 \cdot 10^{-5}$	n/a	$4.4 \cdot 10^{-6}$
$\beta (e \rightarrow \tau)$	$< 10^{-6}$	n/a	$1.0 \cdot 10^{-5}$
$\mu \; (\mu ightarrow au)$	$< 10^{-6}$	$1.0 \cdot 10^{-3} (3.2 \cdot 10^{-5})$	$4.4 \cdot 10^{-6}$
$\mu (e \rightarrow au)$	$< 10^{-6}$	$1.0 \cdot 10^{-3} (3.2 \cdot 10^{-5})$	$1.0 \cdot 10^{-5}$

Langacker, London, PRD 38 (1988) 886 Langacker, London, PRD 38 (1988) 907 Nardi, Roulet, Tommasini, PLB 327 (1994) 319 Tommasini et al., NPB 444 (1995) 451 Antusch et al., JHEP 10 (2006) 084 Antusch, Baumann, Fernandez-Martinez, NPB 810 (2009) 369

Mattias Blennow

New Physics Searches at near detectors of neutrino oscillation experiments

Max-Planck-Institut für Physik

Image: A mathematical states and a mathem

Outline	NP @ near detectors 000000	Bounds and prospects	Summary and conclusion

2 Current bounds and prospects

3 Summary and conclusion

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣 ─ のへぐ

Mattias Blennow

Max-Planck-Institut für Physik

Outline	NP @ near detectors 000000	Bounds and prospects	Summary and conclusion

Summary

- We have derived bounds on 2Q2L operators
- We have discussed why a near \(\tau\) detector would be good in the search for new physics
- We have seen that generally the sensitivity to flavor change probability would have to be $\mathcal{O}(10^{-6})$ in order to compete with current bounds
- The exception is when the neutrinos are produced through charged pion decay (chiral enhancement)