Recent results from atmospheric neutrino analysis at the Super-Kamiokande

Hiroshi Kaji

Research Center for Cosmic Neutrinos Institute for Cosmic Ray Research University of Tokyo on behalf of Super-Kamiokande collaboration

Atmospheric-v sample is sensitive to all oscillation parameters.

Super-Kamiokande

2003

2004

2005

2006

2002

SK-II (half PMT density) SK-I 2006-2008-1996-2002-Elec. Upgrade SK-I SK-III **SK-IV** SK-II

1996

1997

1998

1999

2000

2001

The Super-Kamiokande (SK) is the world's largest water Cherenkov detector.

2007

2008

2009

SK-III (full density) SK-IV (new electronics)

2010

- Target mass 22.5kton (Fiducial volume) Inner detector ~11000 20inch-PMTs Outer detector ~2000 8inch-PMTs
- The operation is stared since 1996 Run-II : half PMT density Run-IV (now) : with new electronics

The atmospheric, solar, and Super Nova (relic) neutrinos are studied. The proton-decay search is still on-going.

The far detector of Japanese LBL v experiments, K2K and T2K. The atmospheric v data used also for the control sample of both experiments.

<u>Atmospheric v event category</u>

We collect four kinds of events. They have different v energy.

The large energy range is covered with these four kinds of event samples.

Zenith angle distribution

ν_µ-ν_τ oscillation (best fit) null oscillation

Full three flavor analysis

"Full three flavor analysis"

takes into account the matter effect, solar, and their interference terms. (Analysis which takes into account only one of matter or solar terms is called "Three flavor analysis".)

The θ_{13} and CP phase, δ_{CP} , are studied in this analysis. The interesting behaviors are seen in the v_e flux if sub-dominant terms are considered.

- The θ_{13} is in the matter and interference terms. - The interference term includes δ_{CP} . (The sin² θ_{12} and $\Delta m_{12}{}^2$ are fixed to be 0.304 and 7.66x10⁻⁵ eV².)

The resultant θ_{23} and Δm_{23}^2 are confirmed. \Rightarrow see next slide.

Difference in # of electron events: $\Delta_{e} \equiv \frac{N_{e}}{N_{e}^{0}} \cong \Delta_{1}(\underline{\theta_{13}}) \clubsuit \text{ Matter} \\ + \Delta_{2}(\Delta m_{12}^{2}) \clubsuit \text{ Solar} \\ + \Delta_{3}(\underline{\theta_{13}}, \Delta m_{12}^{2}, \underline{\delta}) \clubsuit \text{ Interference}$

Confirmation of θ_{23} and Δm_{23}^2 results

The resultant θ_{23} and Δm_{23}^2 are consistent with both SK's two flavor and global three-flavor analyses.

<u>The sin² θ_{13} and δ_{CP} results – Normal hierarchy</u>

1D limit

	Best	90% C.L.
$sin^2\theta_{13}$	0.006	< 0.066
CΡ- δ	220°	-

The CHOOZ limit to θ_{13} is confirmed. No significant constraint to the δ_{CP} at 90 % C.L.

1D limit

	Best	90% C.L.
$sin^2\theta_{13}$	0.044	< 0.122
CP- δ	220°	121.4 - 319.1°

The CHOOZ limit to $\theta_{\rm 13}$ is confirmed. No significant constraint to the $\delta_{\rm CP}$ at 90 % C.L.

There is a possibility to make the first δ_{CP} result with "current" experiments. SK can make a constraint to δ_{CP} if large θ_{13} is determined by LBL or reactor.

Mass hierarchy test

The χ^2 is compared between normal and inverted results.

However, no significant difference.

Summary of full three-flavor result

Normal hierarchy (χ^2_{min} /dof= 469.94/416)

Parameter	Best point	90% C.L. allowed	68% C.L. allowed
∆m² ₂₃ (x10³)	2.11 eV ²	1.88 - 2.75 eV ²	1.99 - 2.54 eV ²
$sin^2\theta_{23}$	0.525	0.406 - 0.629	0.441 - 0.597
sin²θ ₁₃	0.006	< 0.066	< 0.036
CP- δ	220°	-	140.8 - 297.3º

Inverted hierarchy (χ^2_{min} /dof= 468.34/416)

Parameter	Best point	90% C.L. allowed	68% C.L. allowed
∆m² ₂₃ (x10³)	2.51 eV ²	1.98 - 2.81 eV ²	2.09 - 2.64 eV ²
sin²θ ₂₃	0.575	0.426 - 0.644	0.501 - 0.623
$sin^2\theta_{13}$	0.044	< 0.122	0.0122 - 0.0850
CP- δ	220°	121.4 - 319.1º	165.6 - 280.4º

Determine v and anti-v oscillations, separately.

Arrowed region for anti-neutrino

Parameter	Best Fit	90% C.L. Bound
A 2	$21 10^{-3} 17^{2}$	$[1 \circ \circ =]$ $1 \circ = 3 \times 2$
Δm^2 $\Delta \bar{m}^2$	$2.1 \times 10^{-3} \text{eV}^2$ 2.0 × 10 ⁻³ eV ²	$[1.8, 2.7] \times 10^{-3} \text{eV}^2$ $[1.5, 3, 1] \times 10^{-3} \text{eV}^2$
$\sin^2 2\theta$	$2.0 \times 10^{\circ}$ eV 1.0°	$[1.3, 3.1] \times 10^{\circ} \text{ eV}$ [0.92, 1.0]
$\sin^2 2\bar{\theta}$	1.0	$\begin{bmatrix} 0.88, 1.0 \end{bmatrix}$

The oscillation parameters for v and anti-v are consistent. No evidence for CPT violation is observed.

However, there is no inconsistency between the MINOS and our results since partially same region is allowed by both experiments.

Tau appearance analysis

SK-I only PRL97,171801 (2006)

	Data	Signal	Background
Fiducial Vol.	-	78.4 (100%)	17135 (100%)
E _{vis} >1330MeV	2888	51.5 (65.7%)	2943 (17.2%)
1st-ring e-like	1803	47.1 (60.1%)	1765 (10.3%)
Likelihood	649	33.8 (43.1%)	647 (3.79%)
Neural Network	603	30.6 (39.0%)	577 (3.36%)

 $(\sin^2 2\theta = 1.0, \Delta m^2 = 2.4 \times 10^{-3} \text{eV}^2 \text{ assumed for MC})$

Two approaches are performed.

Likelihood (χ^2 /dof =7.6/8)

Best fit:
$$N_{\tau} = 138 \pm 48(\text{stat.})_{-32}^{+15}(\text{syst.})$$

Expected: $N_{\tau} = 78 \pm 26(syst)$

The τ enrich sample is consistent with $v_{\mu} - v_{\tau}$ oscillation. The 2.4 σ signal is determined.

The analysis will be updated with SK-I,II,III, soon.

Summary of results

Neutrino oscillation

	Data-set	Remarks
Two flavor	SK-I,II,III	Zenith, L/E
Three flavor	SK-I,II,III	Solar term(θ_{12} , Δm_{12}^2), matter effect(θ_{13})
Full three flavor	SK-I,II,III	$θ_{13}$, $δ_{CP}$
CPT violation	SK-I,II,III	No evidence
Non-standard interactions	SK-I,II	No evidence
Tau appearance	SK-I	2.4 σ , will be updated soon

Proton decay

	Data-set	Remarks
p→e ⁺ π ⁰	SK-I,II,III	Life time>1.0x10 ³⁴ years

Astro-physics

	Data-set	Remarks
WIMP search	SK-I,II,III	Galactic Center, Diffuse source

SK-IV preliminary result

- This result is released for supporting the T2K analysis.
- The oscillation analysis is on-going and will be released in next summer.

Conclusion

Super-Kamiokande plays important roles for the ν -oscillation analysis.

Atmospheric-v sample is sensitive to all oscillation parameters.

- The best limit to $\theta_{\rm 23}$ is produced.
- We focus on the sub-dominant effects. The CHOOZ limit to $\theta_{\rm 13}$ is confirmed. The CP phase, $\delta_{\rm CP}$, analysis is performed.

Search for CP violation in v-oscillation is no longer future plan.

- There is a possibility to make the first result by global analysis of "current" experiments.
- The constraint to δ_{CP} can be made by atmospheric- ν sample if large θ_{13} is determined by LBL or reactor experiments.

There is no evidence for CPT violation at atmospheric- $\boldsymbol{\nu}$ flux.

- SK tests the "MINOS-type" CPT violation.
- The SK allowed region suggest CPT conservation. However, there is no inconsistency since MINOS also allows this region.

<u>Authors</u>

R. Wendell,⁹ C. Ishihara,² K. Abe,¹ Y. Hayato,^{1,3} T. Iida,¹ M. Ikeda,¹ K. Iyogi,¹ J. Kameda,¹ K. Kobayashi,¹ Y. Koshio,¹ Y. Kozuma,¹ M. Miura,¹ S. Moriyama,^{1,3} M. Nakahata,^{1,3} S. Nakayama,¹ Y. Obayashi,¹ H. Ogawa,¹ H. Sekiya,¹ M. Shiozawa,^{1,3} Y. Suzuki,^{1,3} A. Takeda,¹ Y. Takenaga,¹ Y. Takeuchi,^{1,3} K. Ueno,¹ K. Ueshima,¹ H. Watanabe,¹ S. Yamada,¹ T. Yokozawa,¹ S. Hazama,² H. Kaji,² T. Kajita,^{2,3} K. Kaneyuki,^{2,3} T. McLachlan,² K. Okumura,² Y. Shimizu,² N. Tanimoto,² M. R. Vagins,^{3,6} F. Dufour,⁴ E. Kearns,^{4,3} M. Litos,⁴ J. L. Raaf,⁴ J. L. Stone,^{4,3} L. R. Sulak,⁴ W. Wang,^{4,*} M. Goldhaber,⁵ K. Bays,⁶ D. Casper,⁶ J. P. Cravens,⁶ W. R. Kropp,⁶ S. Mine,⁶ C. Regis,⁶ M. B. Smy,^{6,3} H. W. Sobel,^{6,3} K. S. Ganezer,⁷ J. Hill,⁷ W. E. Keig,⁷ J. S. Jang,⁸ J. Y. Kim,⁸ I. T. Lim,⁸ J. Albert,⁹ M. Fechner,^{9,†} K. Scholberg,^{9,3} C. W. Walter,^{9,3} S. Tasaka,¹⁰ J. G. Learned,¹¹ S. Matsuno,¹¹ Y. Watanabe,¹² T. Hasegawa,¹³ T. Ishida,¹³ T. Ishii,¹³ T. Kobayashi,¹³ T. Nakadaira,¹³ K. Nakamura,^{13,3} K. Nishikawa,¹³ H. Nishino,¹³ Y. Oyama,¹³ K. Sakashita,¹³ T. Sekiguchi,¹³ T. Tsukamoto,¹³ A. T. Suzuki,¹⁴ A. Minamino,¹⁵ T. Nakaya,^{15,3} Y. Fukuda,¹⁶ Y. Itow,¹⁷ G. Mitsuka,¹⁷ T. Tanaka,¹⁷ C. K. Jung,¹⁸ G. Lopez,¹⁸ C. McGrew,¹⁸ C. Yanagisawa,¹⁸ N. Tamura,¹⁹ H. Ishino,²⁰ A. Kibayashi,²⁰ S. Mino,²⁰ T. Mori,²⁰ M. Sakuda,²⁰ H. Toyota,²⁰ Y. Kuno,²¹ M. Yoshida,²¹ S. B. Kim,²² B. S. Yang,²² T. Ishizuka,²³ H. Okazawa,²⁴ Y. Choi,²⁵ K. Nishijima,²⁶ Y. Yokosawa,²⁶ M. Koshiba,²⁷ M. Yokoyama,²⁷ Y. Totsuka,^{27,‡} S. Chen,²⁸ Y. Heng,²⁸ Z. Yang,²⁸ H. Zhang,²⁸ D. Kielczewska,²⁹ P. Mijakowski,²⁹ K. Connolly,³⁰ M. Dziomba,³⁰ E. Thrane,^{30,§} and R. J. Wilkes³⁰

<u>Institutes</u>

¹Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan ²Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ³Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ⁴Department of Physics, Boston University, Boston, Massachusetts 02215, USA ⁵Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA ⁶Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA Department of Physics, California State University, Dominguez Hills, Carson, California 90747, USA ⁸Department of Physics, Chonnam National University, Kwangju 500-757, Korea ⁹Department of Physics, Duke University, Durham North Carolina 27708, USA ¹⁰Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan ¹¹Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA ¹²Physics Division, Department of Engineering, Kanagawa University, Kanagawa, Yokohama 221-8686, Japan ¹³High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ¹⁴Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹⁵Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan ¹⁶Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan ¹⁷Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan ¹⁸Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA ¹⁹Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan ²⁰Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan ²¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ²²Department of Physics, Seoul National University, Seoul 151-742, Korea ²³Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ²⁴Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka, 425-8611, Japan ²⁵Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea ²⁶Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan ²⁷The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ²⁸Department of Engineering Physics, Tsinghua University, Beijing, 100084, China ²⁹Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ³⁰Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

DAQ system in SK-IV

SK-I,II,III: partial data above threshold (Num. of hits) were read (1.3µsec window x3kHz) SK-IV: All hits above pulse height threshold are read, then apply complex triggers by software.

Typical event time windows:	
Super-Low-Energy (SLE) events (<~6.5MeV): -0.5/+1.0µsec	high rate (~3kHz)
Normal events(>~6.5MeV): -5/+35µsec	decay electrons
Supernova Relic v (SRN) candidates(>~10MeV, No OD): -5/+53	5µsec neutrons
T2K events: -512/+512µsec at T2K beam spill timing	

Wider dynamic range for charge measurement of each channel (>2000pC)	x5
No dead time up to ~6MHz/10sec for Supernova burst neutrinos	x100
Apply precise event reconstruction to remove more low-e BG events in real-time	

Michel electron tagging in SK-IV

Wider gate width of SK-IV enables detection of muon decay electrons at T~1 μ s.

Tau Leptons in Super-K

A search for another smoking gun of neutrino oscillation: tau *neutrino appearance*.

Signal: high energy, extra pions from tau decay, more spherically symmetric due to decay of heavy tau.

Tau appearance Neural Network

Neural Network (χ^2 /dof =9.8/8) Best fit: $N_{\tau} = 134 \pm 48(stat.)^{+16}_{-27}(syst)$ Expected: $N_{\tau} = 78 \pm 26(syst)$

Five variables used for analysis

Compare the likelihood variables with down-going data.

Coming Soon: Analysis with new data and techniques

SKI: 1489 Days / SKII: 799 Days / SKIII: 518 Days

Use all of the information to perform a 2D un-binned likelihood fit of signal and background.

Previously used the projection of the upper ½ of plots. In 2D the shape is very different!

PMT density

SK-I,III,IV

SK-II

<u>Atmospheric v flux</u>

PHYSICAL REVIEW D 75, 043006 (2007)

v and v-bar compositions

Kamioka site-map

