NuFact 2010, Mumbai LSND and MiniBooNE within (3+1) plus NSI

Thomas Schwetz

E. Akhmedov, T. Schwetz, 1007.4171

$\nu_{\mu} \rightarrow \nu_{e}$ data at the $E/L \sim 1 \ eV^{2}$ scale

LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ $87.9 \pm 22.4 \pm 6.0$ excess events $P = (0.264 \pm 0.067 \pm 0.045)\%$ $\sim 3.8\sigma$ away from zero

MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ E > 475: no excess E < 475: $\sim 3\sigma$ excess

MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ ~ 2σ excess, consistent with LSND in 2ν framework

(3+1) neutrino oscillations?

In (3+1) schemes the SBL appearance probability is effectively 2- ν oscillations:

$$P_{\mu e} = \sin^2 2\theta_{\rm SBL} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

with

$$\sin^2 2\theta_{\rm SBL} = 4|U_{e4}|^2|U_{\mu4}|^2$$

(no CP violation)

Appearance vs disappearance in (3+1)

appearance amplitude $\sin^2 2\theta_{\text{SBL}} = 4|U_{e4}|^2|U_{\mu4}|^2$ \Leftrightarrow disapp. exps. constrain $|U_{e4}|^2$ and $|U_{\mu4}|^2$

(3+1) global

strong disagreement between LSND/MB $\bar{\nu}$ and null-result exps.

regions touch each other at $\Delta \chi^2 = 12.7$ (99.8% CL for 2 dof)

More sterile neutrinos?

(3+2) appearance probability

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \phi_{41} + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2} \phi_{51} + 8 |U_{e4} U_{\mu4} U_{e5} U_{\mu5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

with the definitions

$$\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}, \qquad \delta \equiv \arg \left(U_{e4}^* U_{\mu 4} U_{e5} U_{\mu 5}^* \right) \,.$$

(3+2) osc. include the possibility of CP violation! remember: MiniBooNE: neutrinos, LSND: anti-neutrinos good fit to appearance exps (even MB low-E), BUT...

(3+2) disappearance data

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - 4 \left(1 - \sum_{i=4,5} |U_{\alpha i}|^2 \right) \sum_{i=4,5} |U_{\alpha i}|^2 \sin^2 \phi_{i1}$$
$$- 4 |U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

 \Rightarrow bound $|U_{ei}|$ and $|U_{\mu i}|$ (i = 4, 5), similar as in (3+1) to be reconciled with appearance amplitudes $|U_{ei}U_{\mu i}|$

(3+2) does not improve significantly wrt to (3+1)

Maltoni, TS, 0705.0107; Karagiorgi et al., 0906.1997; Akhmedov, TS, 1007.4171

$$\chi^2_{\min,(3+1)\text{osc}} - \chi^2_{\min,(3+2)\text{osc}} = 5.0(4 \text{ dof}) \quad \Rightarrow \quad 71\%\text{CL}$$

- **3-neutrinos and CPT violation** Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- S-neutri KamLAND+atmospheric antineutrino data iviurayama, Yanagida 01; Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- S-neutri KamLAND+atmospheric antineutrino data viurayama, Yanagida 01; Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- S-neutri KamLAND+atmospheric antineutrino data viurayama, Yanagida 01; Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data ______ DCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data _______ DCE Barenboim, Mavromatos 04
- Lorentz violette energy dependence, MiniBooNE?
 Kostelecky, energy dependence, Orossman, 06: Katori, Ko ..., Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data ______ DCE Barenboim, Mavromatos 04
- Lorentz violette energy dependence, MiniBooNE?
 Kostelecky, energy dependence, Orossman, 06; Katori, Ko 1. Jun Stelecky, Tayloe, 06; Katori, Kostelecky, Tayloe, 06
- Mass varyin CDHS+atmospheric data? Kaplan, Nelson, Wei , _____, Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Bellouv, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data ______ DCE Barenboim, Mavromatos 04
- Lorentz violette energy dependence, MiniBooNE?
 Kostelecky, energy dependence, Orossman, 06; Katori, Ko 100 Jossman, 06; Katori, Kostelecky, Tayloe, 06
- Mass varyin CDHS+atmospheric data? Kaplan, Nelson, Wei Barger, Marfatia, Whisnant 05
- Paes, Pakvasa, We MiniB+KamL+atmospheric? Extra dimensions shortcuts of sterile posts
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data ______ DCE Barenboim, Mavromatos 04
- Lorentz violette Kostelecky, energy dependence, MiniBooNE?
- Mass varyin CDHS+atmospheric data? Kaplan, Nelson, Wei Barger, Marfatia, Whisnant 05
- Paes, Pakvasa, We MiniB+KamL+atmospheric? 2xtra dimensions shortcuts of sterile post
- 1 decaying steril (MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Bellow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data _______ Barenboim, Mavromatos 04
- Lorentz violette energy dependence, MiniBooNE?
 Kostelecky, energy dependence, Orossman, 06; Katori, Ko, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- Mass varyin CDHS+atmospheric data? Kaplan, Nelson, Wei -Morton 04, Barger, Marfatia, Whisnant 05
- Paes, Pakvasa, We MiniB+KamL+atmospheric? 2xtra dimensions shortcuts of sterilo pout
- 1 decaying steril (MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrir KamL+atmospheric? ge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

- 3-neutri KamLAND+atmospheric antineutrino data Murayama, Yanagida 01; Barenboim, Bullow, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data _______ Barenboim, Mavromatos 04
- Lorentz violette energy dependence, MiniBooNE?
 Kostelecky, energy dependence, Orossman, 06; Katori, Ko, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- **Mass varying CDHS+atmospheric data?** Kaplan, Nelson, Wei - Jon 04, Barger, Marfatia, Whisnant 05
- Paes, Pakvasa, We MiniB+KamL+atmospheric? 2xtra dimensions shortcuts of sterilo pout
- 1 decaying steril (MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- Sterile neutrir KamL+atmospheric? Ge boson Nelson, Walsh 07
- sterile ν with engine $\overline{\nu}$? hass or mixing TS, 07

a sterile neutrino plus non-standard interactions

E. Akhmedov, TS, 1007.4171

Assume

- a 4th neutrino with $\Delta m^2_{41} \sim 1~{
 m eV^2}$
- a new type of CC-like interaction

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \sum_{\alpha,\beta} \varepsilon_{\alpha\beta}^{ff'} (\bar{f}P_{L,R}\gamma^{\mu}f') (\bar{l}_{\alpha}P_L\gamma_{\mu}\nu_{\beta}) + h.c.$$

f, *f*' fermions depending on production or detection process (NC-like NSI will have no relevant effect in short-baseline experiments since matter effect is very small)

Transition amplitudes in (3+1) NSI

state appearing in a process at X = S, D (source, detector):

$$|\nu_{\alpha}^{X}\rangle = C_{\alpha}^{X} \left(|\nu_{\alpha}\rangle + \sum_{\beta} \varepsilon_{\alpha\beta}^{X}|\nu_{\beta}\rangle\right) = C_{\alpha}^{X} \sum_{i} \left(U_{\alpha i}^{*} + \sum_{\beta} \varepsilon_{\alpha\beta}^{X}U_{\beta i}^{*}\right) |\nu_{i}\rangle$$
$$\underbrace{=F_{\alpha i}^{X}}$$

transition amplitude

$$\mathcal{A}_{\alpha\beta}(L) = \sum_{i} F^{S}_{\alpha i} F^{D*}_{\beta i} e^{-iE_{i}L} \xrightarrow{\text{SBLlimit}} \alpha_{\alpha\beta}(e^{-i\Delta} - 1) + \beta_{\alpha\beta}$$

where

$$\Delta \equiv \frac{\Delta m_{41}^2 L}{2E}, \qquad \alpha_{\alpha\beta} = F_{\alpha4}^S F_{\beta4}^{D*}, \qquad \beta_{\alpha\beta} = \sum_i F_{\alpha i}^S F_{\beta i}^{D*}$$

T. Schwetz, NuFact2010, Mumbai – p.14

Transition probability in (3+1) NSI

$$P_{\alpha\beta}(L) = \underbrace{4 \left[|\alpha_{\alpha\beta}|^2 - \operatorname{Re}(\beta_{\alpha\beta}^* \alpha_{\alpha\beta}) \right] \sin^2(\Delta/2)}_{\text{similar to standard oscillations}} \\ + \underbrace{|\beta_{\alpha\beta}|^2}_{\text{zero-distance effect}} + \underbrace{2\operatorname{Im}(\beta_{\alpha\beta}^* \alpha_{\alpha\beta}) \sin \Delta}_{\text{NSI-osc interference}} \\ \to \operatorname{CP viol}$$

Transition probability in (3+1) NSI

$$P_{\alpha\beta}(L) = \underbrace{4 \left[|\alpha_{\alpha\beta}|^2 - \operatorname{Re}(\beta_{\alpha\beta}^* \alpha_{\alpha\beta}) \right] \sin^2(\Delta/2)}_{\text{similar to standard oscillations}} \\ + \underbrace{|\beta_{\alpha\beta}|^2}_{\text{zero-distance effect}} + \underbrace{2\operatorname{Im}(\beta_{\alpha\beta}^* \alpha_{\alpha\beta}) \sin \Delta}_{\text{NSI-osc interference}} \\ \rightarrow \operatorname{CP viol}$$

disappearance experiments: $\beta_{\alpha\alpha} = \sum_{i} F^{S}_{\alpha i} F^{D*}_{\alpha i}$ if process at source and detector are the inverse of each other:

$$\beta_{\alpha\alpha} = 1 \quad \Rightarrow \quad P_{\alpha\alpha} = 1 - 4\alpha_{\alpha}(1 - \alpha_{\alpha})\sin^2(\Delta/2)$$

similar to (3+1) oscillations with $\alpha_{\alpha} \rightarrow |U_{\alpha 4}|^2$ CP viol and zero-distance effects in disapp exps only for $S \neq D$

Source and detection processes

	source	detection
LSND/KARMEN	μ decay	ν -nucl CC (e)
MiniB/NOMAD	π decay	ν -nucl CC (e)
CDHS (atm)	π decay	ν -nucl CC (μ)
Bugey/Chooz	ν -nucl CC (e)	ν -nucl CC (e)

Source and detection processes

	source	detection
LSND/KARMEN	μ decay	ν -nucl CC (e)
MiniB/NOMAD	π decay	ν -nucl CC (e)
CDHS (atm)	π decay	ν -nucl CC (μ)
Bugey/Chooz	ν -nucl CC (e)	ν -nucl CC (e)

Scenario 1: decouple LSND/KARMEN from the rest

$$egin{aligned} &|lpha_{\mu e}^{
m LK}|,|eta_{\mu e}^{
m LK}|,\delta^{
m LK}\ &|lpha_{e},lpha_{\mu},|eta_{\mu e}|,\delta~(|lpha_{\mu e}|=\sqrt{lpha_{e}lpha_{\mu}})\ &\Delta m_{41}^2 \end{aligned}$$

 \rightarrow 8 parameters: **NSI**^g

Data set	$ lpha_{\mu e}^{ m LK} $	$ eta^{ m LK}_{\mu e} $	$\delta^{ m LK}$	$ lpha_{\mu e} $	$ eta_{\mu e} $	δ	Δm^2_{41}	χ^2 /dof
Appearance	0.31	0.029	0.49π	0.15	0.011	1.5π	$0.13 \mathrm{eV}^2$	29.4/(37-7)
Global	0.053	0.036	0.39π	0.010	0.013	1.2π	$0.89 \ \mathrm{eV}^2$	95.4/(115-8)

 $\chi^2_{\min,(3+1)osc} - \chi^2_{\min,(3+2)NSI^g} = 18.5(5 \text{ dof}) \Rightarrow 99.76\% \text{CL}$ appearance and disapp.: PG compatibility of 15%

NSI^g parameters

$$\begin{split} |U_{e4}| &\approx 0.116, \ |U_{\mu4}| \approx 0.205\\ |\varepsilon_{\mu s}^{ud}| &\approx 0.05, \ |\varepsilon_{e\mu}^{ud}| \approx 0.011, \ |\varepsilon_{\mu s}^{e\nu}| \approx 0.03, \ |\varepsilon_{\mu e}^{e\nu}| \approx 0.01 \end{split}$$
in agreement with bounds Biggio, Blennow, Fernandez-Martinez, 0907.0097

 $\begin{aligned} |\alpha_{\mu e}| &\approx (|U_{\mu 4}| - |\varepsilon_{\mu s}^{ud}|)|U_{e4}| \approx 0.018 \qquad |\beta_{\mu e}| \approx |\varepsilon_{e\mu}^{ud}| \approx 0.011 \\ |\alpha_{\mu e}^{\mathrm{LK}}| &\approx (|U_{\mu 4}| + |\varepsilon_{\mu s}^{e\nu}|)|U_{e4}| \approx 0.027 \qquad |\beta_{\mu e}^{\mathrm{LK}}| \approx |\varepsilon_{e\mu}^{ud}| + |\varepsilon_{\mu e}^{\nu e}| \approx 0.021 \end{aligned}$

Scenario 2: "constrained" model assume $\varepsilon^{S,D}_{\mu\alpha} \approx 0$

$$\alpha_e, \alpha_\mu, |\beta_{\mu e}|, \delta, \Delta m_{41}^2 \quad (|\alpha_{\mu e}| = \sqrt{\alpha_e \alpha_\mu})$$

 \rightarrow 5 parameters: **NSI**^c

Scenario 2: "constrained" model assume $\varepsilon^{S,D}_{\mu\alpha} \approx 0$

$$\alpha_e, \alpha_\mu, |\beta_{\mu e}|, \delta, \Delta m_{41}^2 \quad (|\alpha_{\mu e}| = \sqrt{\alpha_e \alpha_\mu})$$

\rightarrow 5 parameters: **NSI**^c

need only one non-zero NSI parameter: $\varepsilon_{e\mu}^{ud}$

$$\beta_{\mu e} = \varepsilon_{e\mu}^{ud*}, \quad \alpha_e = |U_{e4}|^2, \quad \alpha_\mu = |U_{\mu 4}|^2, \quad \delta = \operatorname{Arg}(U_{e4}U_{\mu 4}^*\varepsilon_{e\mu}^{ud})$$

with $|\varepsilon_{e\mu}^{ud}| \approx 0.017$

NSI^c fit results

	Data set	$ lpha_{\mu e} $	$ eta_{\mu e} $	δ	Δm^2_{41}	χ^2 /dof	
	Appearance	0.2075	0.0091	1.5π	0.1 eV 2	33.5/(37-4)	
	Global	0.019	0.017	1.3π	$0.89 \mathrm{eV}^2$	107/(115-5)	
, i	MiniDooNE (nout	min og)	MiniDool	NE (anti	noutrinos)	I SND	
0.8 0.6 0.2 0.2 0.3	\bullet	$\begin{array}{c} 11110S \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 3 \\ 2 \\ - \\ 0 \\ 0$	0.9 1.2	-neutrinos) 1 -	LSND LSND LSND LSND LSND LSND LSND LSND LSND LSND LSND LZ 0.2	

 $\chi^2_{\min,(3+1)\text{osc}} - \chi^2_{\min,(3+2)\text{NSI}^c} = 6.9(2 \text{ dof}) \quad \Rightarrow \quad 97\% \text{CL}$

NSI^c fit results

 $\chi^2_{\min,(3+1)\text{osc}} - \chi^2_{\min,(3+2)\text{NSI}^c} = 6.9(2 \text{ dof}) \quad \Rightarrow \quad 97\% \text{CL}$

Appearance vs disappearance in NSI^c

Although the fit improves there is still tension

appearance and disapp.: PG compatibility of 0.3%

Comparison

(3+1) and NSI – summary

eV-scale sterile neutrino + CC-like NSI

- offer CP violation by osc-NSI interference (LSND/MiniBooNE) in constrained version there is still some tension between appearance and disappearance
- allow to decouple LSND/KARMEN from all other data thanks to different production process → resolve tension between appearance and disappearance
- cannot explain low-energy excess in MiniBooNE

tests of the idea:

- search for eV sterile neutrinos talks by P. Huber, J. Tang look for effects in SBL disappearance experiments!
- search for NSI

talks by S. Parke, O. Yasuda, W. Rodejohann, M. Blennow, J. Lopez-Pavon **Zero-distance effects**

look for mediator particles at LHC

if due to dim-6 operator $\varepsilon G_F(\bar{f}f')(\bar{\ell}\nu)$ expect a charged mediator with $m_{\phi} \sim m_W/\sqrt{\varepsilon} \sim \text{TeV} \rightarrow \text{excellent prospect at LHC}$

if due to dim-6 operator $\varepsilon G_F(\bar{f}f')(\bar{\ell}\nu)$ expect a charged mediator with $m_{\phi} \sim m_W/\sqrt{\varepsilon} \sim \text{TeV} \rightarrow \text{excellent prospect at LHC}$

BUT: seems difficult (impossible?) to obtain such operators at dim-6 in a gauge invariant way \rightarrow go to dim-8 and involve some fine tuning

Gavela, Hernandez, Ota, Winter, 0809.3451; Antusch, Baumann, Fernandez, 0807.1003

if due to dim-6 operator $\varepsilon G_F(\bar{f}f')(\bar{\ell}\nu)$ expect a charged mediator with $m_{\phi} \sim m_W/\sqrt{\varepsilon} \sim \text{TeV} \rightarrow \text{excellent prospect at LHC}$

BUT: seems difficult (impossible?) to obtain such operators at dim-6 in a gauge invariant way \rightarrow go to dim-8 and involve some fine tuning

Gavela, Hernandez, Ota, Winter, 0809.3451; Antusch, Baumann, Fernandez, 0807.1003

Thank you for your attention!