
LBNE : Physics Reach & Status

Brajesh Choudhary University of Delhi, Delhi On behalf of LBNE Collaboration

12th International Workshop on Neutrino Factories, Superbeams and Beta Beams 20-25 October, 2010, TIFR-Mumbai, India

LBNE COLLABORATION

Alabama: J. Goon, I Stancu

Argonne: M. D'Agostino, G. Drake. Z. Djurcic, M. Goodman, X. Huang, V. Guarino, J. Paley, R. Talaga, M. Wetstein

Boston: E. Hazen, E. Kearns, J. Raaf, J. Stone

Brookhaven: M. Bishai, R. Brown, H. Chen, M. Diwan, J. Dolph, G. Geronimo, R. Gill, R. Hackenberg, R. Hahn, S. Hans, D. Jaffe, S. Junnarkar, J.S. Kettell, F. Lanni, L. Littenberg, J. Ling, D. Makowiecki, W. Marciano, W. Morse, Z. Parsa, C. Pearson, V. Radeka, S. Rescia, T. Russo, N. Samios, R. Sharma, N. Simos, J. Sondericker, J. Stewart, H. Tanaka, C. Thorn, B. Viren, Z. Wang, S. White, L. Whitehead, M. Yeh, B. Yu

Caltech: R. McKeown, X. Qian, C. Zhang

Cambridge: A. Blake, M. Thomson

Catania/INFN: V. Bellini, G. Garilli, R. Potenza, M. Trovato

Chicago: E. Blucher

Colorado: R. Johnson, A. Marino, M. Tzanov, E. Zimmerman

- Colorado State: M. Bass, B. Berger, J. Brack, N. Buchanan, J. Harton, V. Kravtsov, W. Toki, D. Warner, R. Wilson
- Columbia: R. Carr, L. Camillieri, C.Y. Chi, G. Karagiorgi, C. Mariani, M. Shaevitz, W. Sippach, W. Willis

Crookston: D. Demuth

Dakota State: B. Szcerbinska

Davis: R. Breedon, T. Classen, J. Felde, P. Gupta, M. Tripanthi, R. Svoboda

Drexel: C. Lane, J. Maricic, R. Milincic, K. Zbiri

Duke: J. Fowler, J. Prendki, K. Scholberg, C. Walter, R. Wendell

Duluth: R. Gran, A. Habig

- Fermilab: D. Allspach, B. Baller, D. Boehnlein, S. Childress, T. Dykhuis, A. Hahn, J. Howell, P. Huhr, J. Hylen, M. Johnson, T. Junk, B. Kayser, G. Koizumi, T.
 - Lackowski, P. Lucas, B. Lundberg, T. Lundin, P. Mantsch, J. Morfin, B. Norris, V.
 - Papadimitriou, R. Plunkett, C. Polly, S. Pordes, O. Prokofiev, G. Rameika, B. Rebel, D. Reitzner, K. Riesselmann, R. Rucinski, R. Schmidt, D. Schmitz, P.
 - Shanahan, J. Strait, K. Vaziri, G. Velev, G. Zeller, R. Zwaska

Hawaii: S. Dye, J. Kumar, J. Learned, S. Matsuno, S. Pakvasa, M. Rosen, G. Varner

- Indian Universities: V. Singh (BHU); B. Choudhary, S. Mandal (DU); B. Bhuyan [IIT(G)]; V. Bhatnagar, A. Kumar, S. Sahijpal(PU)
- Indiana: W. Fox, C. Johnson, M. Messier, S. Mufson, J. Musser, R. Tayloe, J. Urheim Iowa State: M. Sanchez

IPMU/Tokyo: M. Vagins

Irvine: G. Carminati, W. Kropp, M. Smy, H. Sobel Kansas State: T. Bolton, G. Horton-Smith LBL: R. Kadel, B. Fujikawa, D. Taylor

Livermore: A. Bernstein, R. Bionta, S. Dazeley, S. Ouedraogo

London-UCL: J. Thomas

Los Alamos: S. Elliott, V. Gehman, G. Garvey, T. Haines, D. Lee, W. Louis, C. Mauger, G. Mills, A. Norrick, Z. Pavlovic, G. Sinnis, W. Sondheim, R. Van de Water, H. White

Louisiana State: W. Coleman, T. Kutter, W. Metcalf, M. Tzanov Maryland: E. Blaufuss, R. Hellauer, T. Straszheim, G. Sullivan

Michigan State: E. Arrieta-Diaz, C. Bromberg, D. Edmunds, J. Huston, B. Page

Minnesota: M. Marshak, W. Miller

MIT: W. Barletta, J. Conrad, T. Katori, R. Lanza, P. Fisher, L. Winslow

NGA: S. Malys, S. Usman

New Mexico: B. Becker, J. Mathews

Notre Dame: J. Losecco

Oxford: G. Barr, J. DeJong, A. Weber

Pennsylvania: J. Klein, K. Lande, A. Mann, M. Newcomer, R. vanBerg Pittsburgh: D. Naples, V. Paolone Princeton: Q. He, K. McDonald Rensselaer: D. Kaminski, J. Napolitano, S. Salon, P. Stoler Rochester: R. Bradford, K. McFarland

SDMST: X. Bai, R. Corey

SMU: T. Liu, J. Ye

South Carolina: H. Duyang, S. Mishra, R. Petti, C. Rosenfeld

South Dakota State: B. Bleakley, K. McTaggert

Texas: S. Kopp, K. Lang, R. Mehdiyev

Tufts: H. Gallagher, T. Kafka, W. Mann, J. Schnepps

UCLA: K. Arisaka, D. Cline, K. Lee, Y. Meng, F. Sergiampietri, H. Wang

Virginia Tech: E. Guarnaccia, J. Link, D. Mohapatra, R. Raghavan

Washington: S. Enomoto, J. Kaspar, N. Tolich, H.K. Tseung

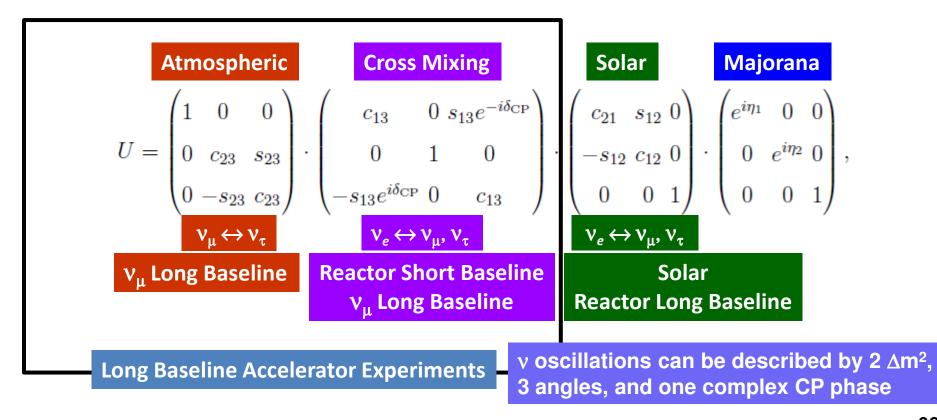
Wisconsin: B. Balantekin, F. Feyzi, K. Heeger, A. Karle, R. Maruyama, D. Webber, C. Wendt

Yale: E. Church, B. Fleming, R. Guenette, M. Soderberg, J. Spitz

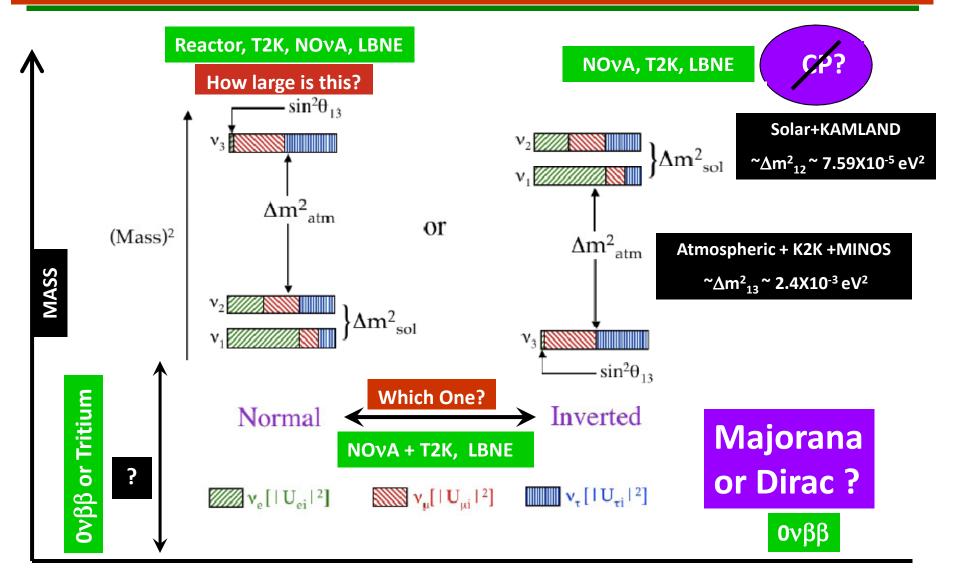
54 Institutions, 257 Members

LBNE COLLABORATION

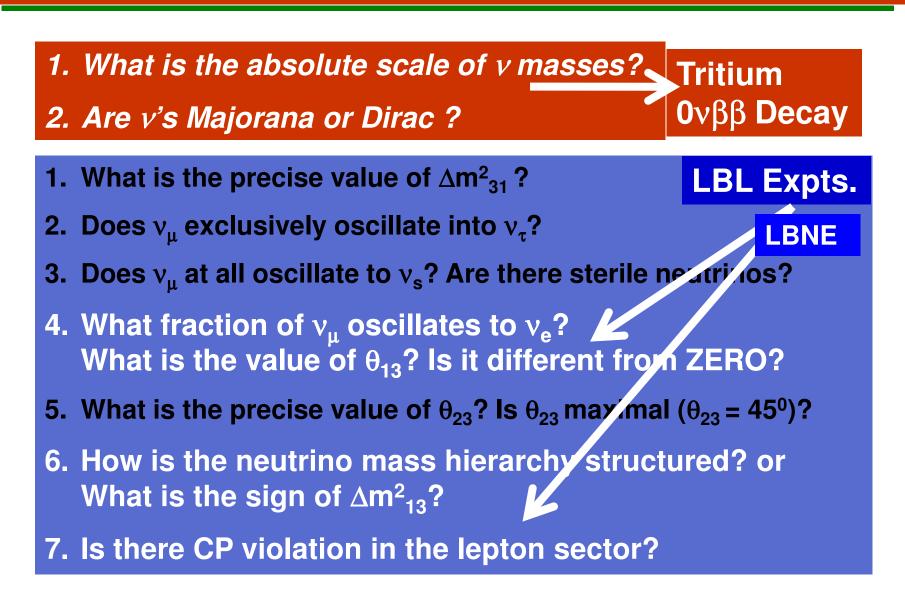
14.SEPTEMBER.2010 - FERMILAB

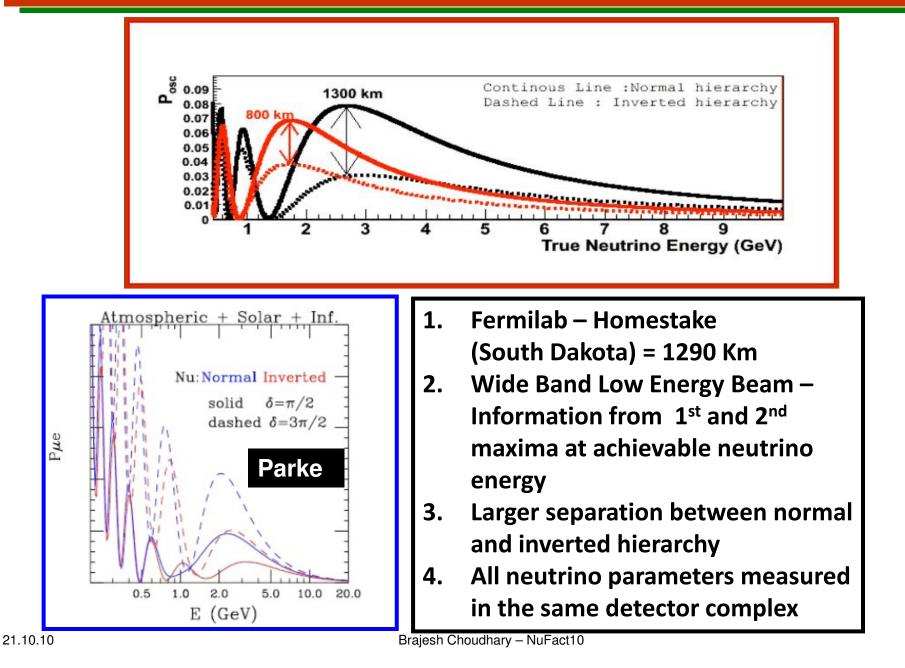

- 1. Neutrino Oscillation Formalism
- 2. What we know, what we don't know, and what we will like to know
- 3. LBNE Beam (Fermilab to DUSEL)
- 4. LBNE Detectors (ND at Fermilab, FD at DUSEL)
- 5. Physics with LBNE
 - a) Long Baseline Physics Reach
 - i. Precise measurement of θ_{13}
 - ii. Determination of Mass Hierarchy
 - iii. CP Violation in Neutrinos
 - iv. Precise measurement of Δm_{31}^2 and θ_{23}
 - b) Proton Decay
 - c) Supernova Neutrino Bursts
 - d) Diffuse Supernova Neutrinos
 - e) Atmospheric Neutrinos
 - f) High Energy Neutrinos
 - g) Solar Neutrinos
- 6. Summary and Conclusions

Not covered in this talk.

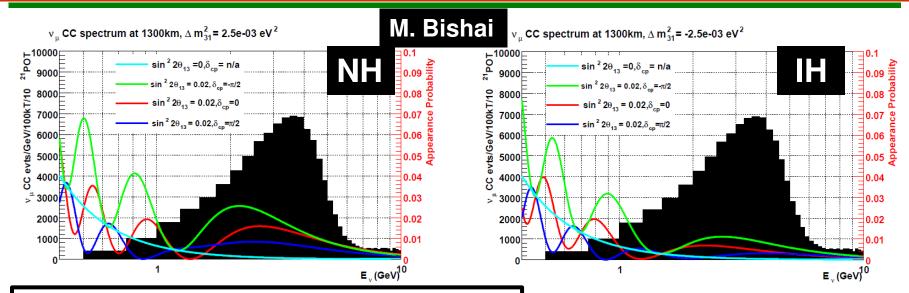


$$\begin{bmatrix} \mathsf{FLAVOR} \\ \mathsf{Eigenstates} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 3} & U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \begin{bmatrix} \mathsf{MASS} \\ \mathsf{Eigenstates} \end{bmatrix}$$

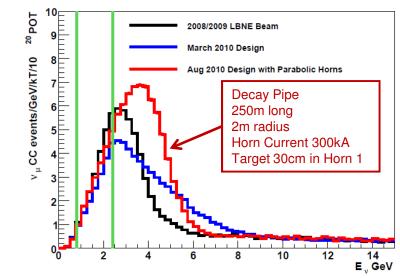




LONG BASELINE WINS THE GAME

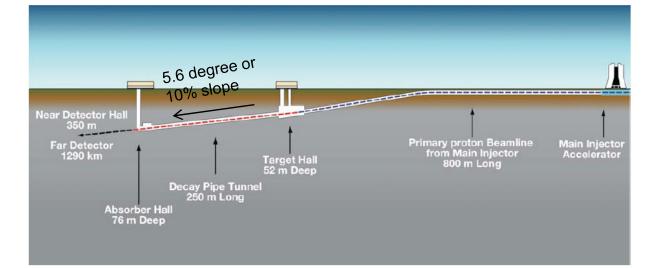

09

LBNE BEAM DESIGN

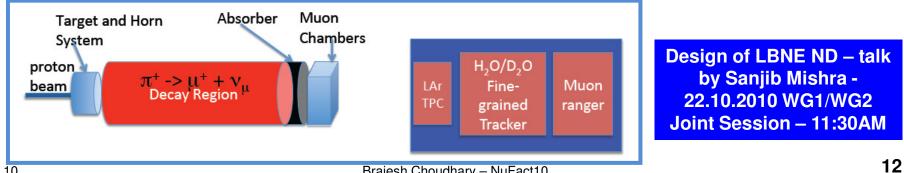


Requirements:

- Wide band beam from 0.5GeV to few GeV to cover 1st (2.4GeV) and 2nd (0.8GeV) oscillation maxima
- 2. Minimize flux above 5GeV to reduce NC background from feed down
- 3. Minimize beam v_e by design
- 4. Target, shielding & material need to handle 700 kW
- 5. Civil construction and some technical component to be rated for 2.3MW

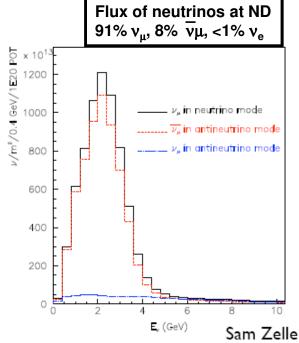


LBNE BEAM DESIGN



		Element	Parameter	Range	Reference design value
Parameter	Value	Target	material	graphite, Be	graphite
Protons per cycle	4.9x10 ¹³		diameter	0.5 to 1.6 cm	1.53 cm
Cycle time (120 GeV)	1.33 sec		length	$\sim \! 2$ interaction lengths	96.6cm
Duration (10µs)	1.0x10 ⁻⁵ sec	Focusing Horn 1	length	250 to 350 cm	300 cm
		-11	current	180 to 300 kA	300 kA
Energy	60 to 120 GeV	Focusing Horn 2	length	300 to 400 cm	353 cm
Power at 120 GeV	708 kW		current	180 to 300 kA	300 kA
Operational Efficiency*	63%		distance from start of Horn 1	600 to 800 cm	660 cm
Protons at target per year	7.3x10 ²⁰	Decay Pipe	length	200 to 350 m	250 m
			radius	1.5 to 2 m	2 m
Beam size at Focus <i>x,y</i>	1.5 mm		atmosphere	Air, He, Vacuum	air STP
Beam Divergence <i>x,y</i>	0.017 mrad	Near Detector Cavern	distance from target	Maximum, fits within site bdyboundary	700 m

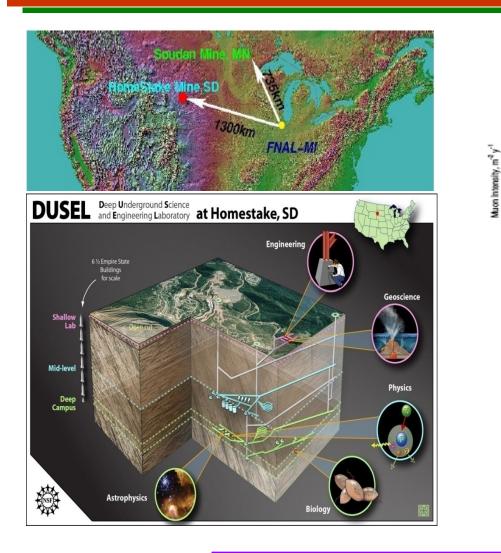
- 1. Near Detectors (ND) will be on the Fermilab site.
- The ND enclosure will be ~420m downstream of the absorber hall 2
- 3. The enclosure will be \sim 110m below the earth's surface.
- 4. A complex of small detectors with different technologies and capabilities offers the best opportunity to fully characterize the beam to the precision needed for normalization of the far detector observations.
- 5. The options for ND complex include (from Sanjib Mishra):
 - Reference Design A 70T LAr, MicroBooNE-like (B = 0) detector, followed by \checkmark HiResMv (with H₂O target) + Muon Chambers (MINOS like)
 - Option 2 A 20T Magnetized LAr detector followed by MINERvA like detector \checkmark (with H₂O target) + Muon Chambers (MINOS like)

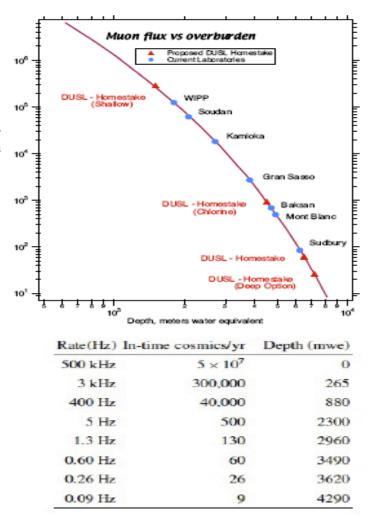


- Define the measurement required at the near site to meet the goals of LBL neutrino analyses
- ✓ How well we must measure the predicted neutrino fluxes?
 - ✓ Intrinsic v_e contamination in the beam
- ✓ How well we must predict signal and background rates and topologies
 - ✓ What measurement must be made to accomplish these predictions?
 - ✓ Charged current background and signal extracting the neutrino flux at far site un-oscillated v_{μ} spectrum
 - ✓ Neutral current background v_{μ} NC π^0 and NC γ
- ✓ Both for v and \overline{v} beam

✓ Same nuclear target as far detector

-				
_	Production mode	H_2O	Ar	Ar/H_2O ratio
	CC QE $(\nu_{\mu}n \to \mu^- p)$	18,977	23,152	1.22
⊢⊢	NC elastic $(\nu_{\mu}N \rightarrow \nu_{\mu}N)$	7,094	7,165	1.01
l o	CC resonant π^+ $(\nu_\mu N \to \mu^- N \pi^+)$	$25,\!821$	24,014	0.93
Ū.	CC resonant π^0 $(\nu_\mu n \to \mu^- p \pi^0)$	6,308	$7,\!696$	1.22
20	NC resonant π^0 $(\nu_\mu N \to \nu_\mu N \pi^0)$	6,261	$6,\!198$	0.99
per 10 ²⁰ PO1	NC resonant π^+ $(\nu_\mu p \to \nu_\mu n \pi^+)$	$2,\!694$	2,182	0.81
Ľ	NC resonant $\pi^- (\nu_\mu n \to \nu_\mu p \pi^-)$	2,325	2,930	1.26
be	CC DIS $(\nu_{\mu}N \rightarrow \mu^{-}X, W > 2)$	29,989	31,788	1.06
c	NC DIS $(\nu_{\mu}N \to \nu_{\mu}X, W > 2)$	10,183	10,285	1.01 c
2	CC coherent π^+ $(\nu_\mu A \to \mu^- A \pi^+)$	1,505	1,505	1.01
Ľ.	NC coherent $\pi^0 \ (\nu_\mu A \to \nu_\mu A \pi^0)$	790	790	1.01
be	NC resonant radiative decay $(N^* \rightarrow N\gamma)$	41		
S	Inverse Muon Decay $(\nu_{\mu}e \rightarrow \mu^{-}\nu_{e})$	6	6	1.00
DT I	$\nu_{\mu}e^- \rightarrow \nu_{\mu}e^-$	11	11	1.00
Events per ton	Other	17,023	17,193	1.01
ш	Total CC	94,948	100,645	1.06
	Total NC+CC	129,028	134,189	1.04

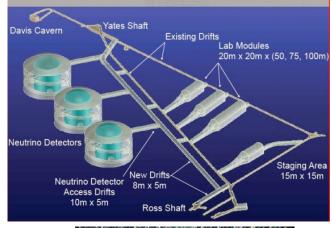


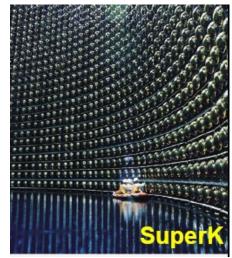

Brajesh Choudhary – NuFact10

LBNE FAR DETECTOR - DEEP UNDERGROUND HELPS

Cosmic ray rate at 4850ft ~0.1Hz – Helps in Proton Decay, relic neutrinos

LBNE DETECTORS – WATER CHERENKOV


Advantages:

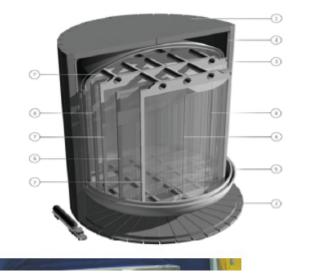

- Tried and tested technology and proven Physics reach – SK/T2K – 50K Detector
- Low cost sensitive medium photosensor "off the shelf"
- Good tracking especially at 1 GeV or less
- Good PID at low energy
- > Energy resolution for e and μ ~3% (SK)
- ► Excellent sensitivity to $p \rightarrow \pi^0 e^+$
- Situated at 4850ft
- Cosmic ray rate at 4850ft ~ 0.1 Hz
- > Low v_e signal efficiency (~15-20%)
- > Low efficiency for $p \rightarrow K^+vbar$
- Could aim to go to 300kTon
- Could be supplemented with Gadolinium for low energy v physics

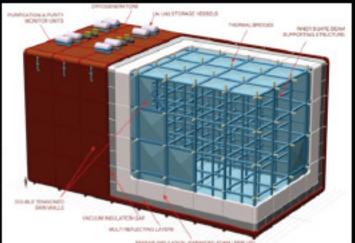
Challenges:

 Large number of phototubes needed (~100K for 40% coverage – each module). Reduction by a factor of 2 works well for higher energy applications (LBL and Proton Decay).
Optimization needed for low energy v physics.

4850 Level Conceptual Layout

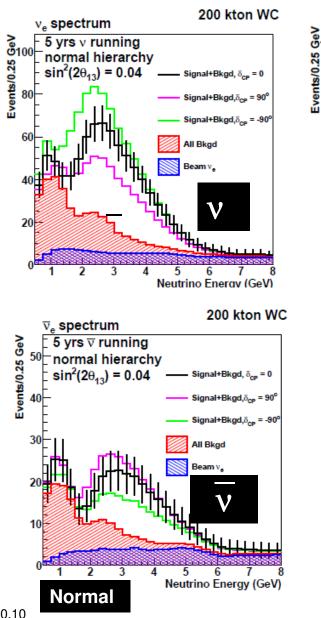
For more on performance and challenges of a large WC Detector – talk by Lisa Whitehead - 22.10.2010 WG1/WG2 Joint Session – 12:36PM

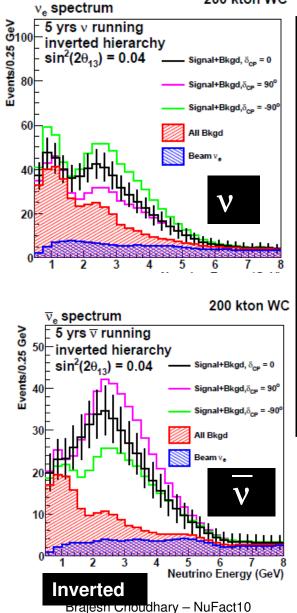

Advantages:

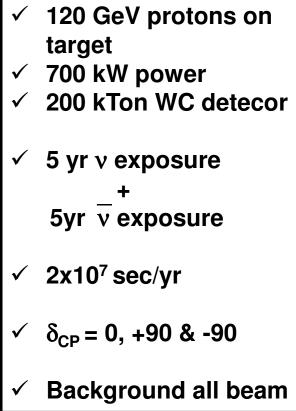

- Bubble chamber like imaging; detailed event topology with few mm position resolution
- Very good energy resolution and track reconstruction for every particle, even at higher energies
- Very high efficiency and almost background free for many processes
- PID with dE/dx, separation of tracks possible
- ➢ Very good sensitivity for p → K⁺vbar
- Possibly situated at 300 ft or 800 ft

Challenges:

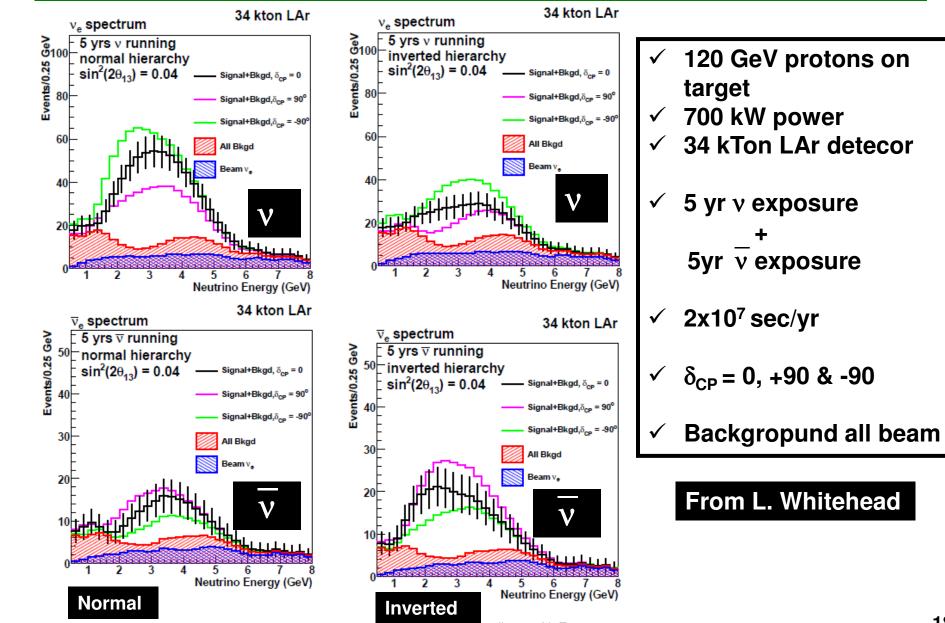
- ✓ Complicated detector technology
- Huge number of channels (depending on position resolution)
- ✓ Technology not yet proven for 50KTon
- Safety issues and technical risk for underground environment
- ✓ Uncertain cost



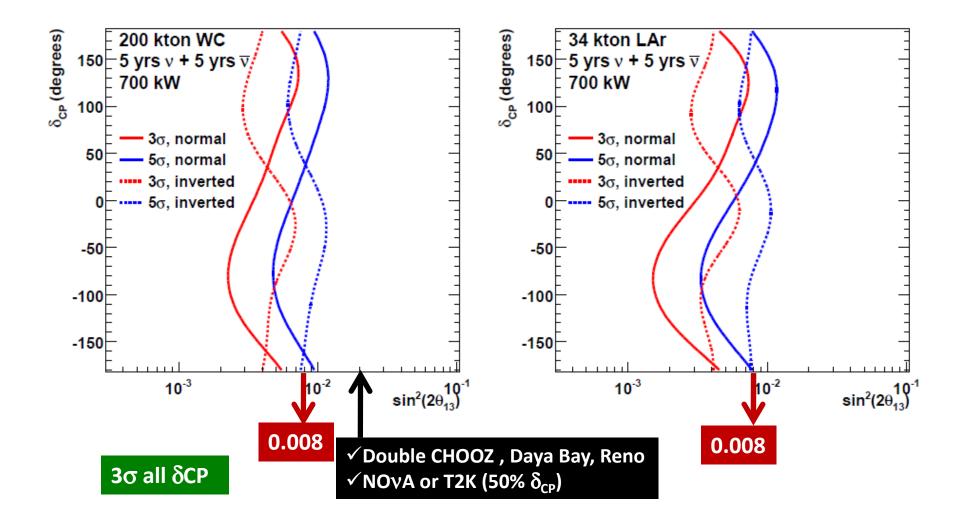


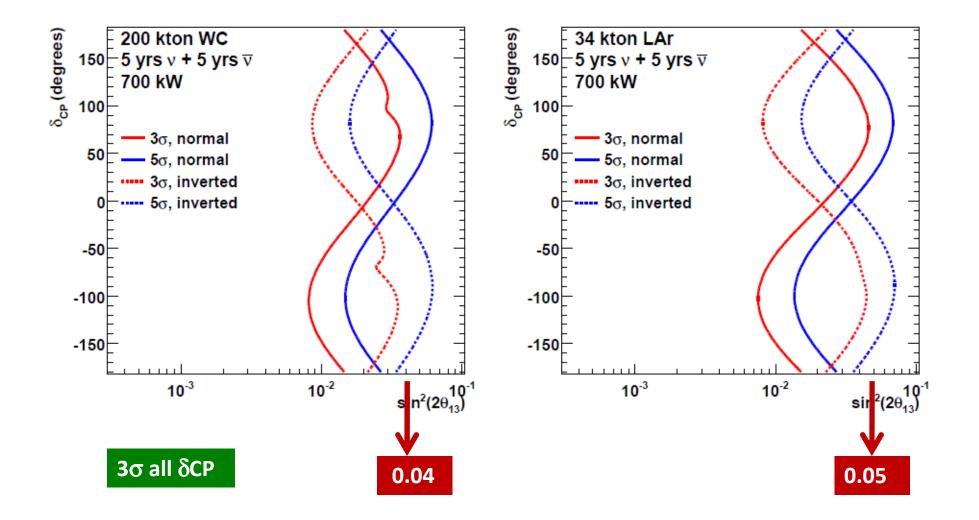


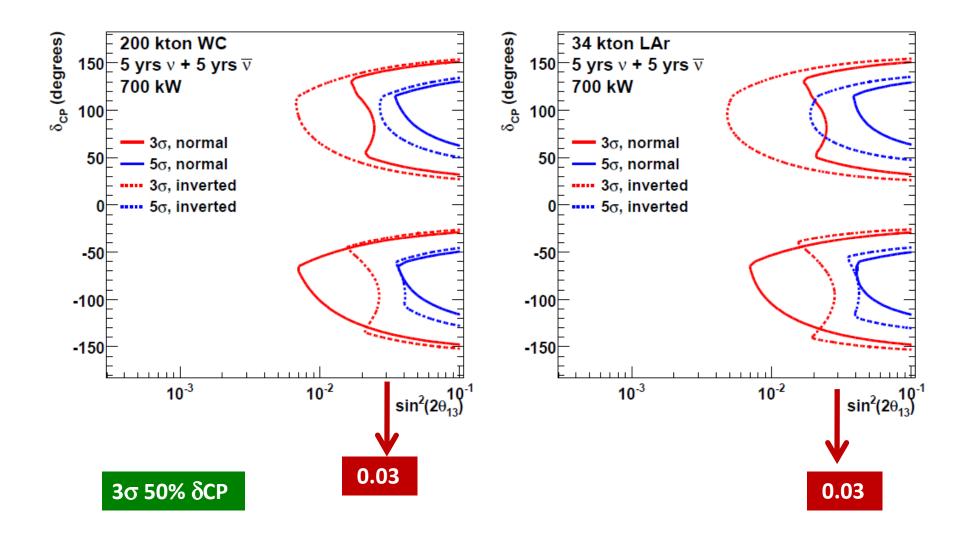
200 kton WC

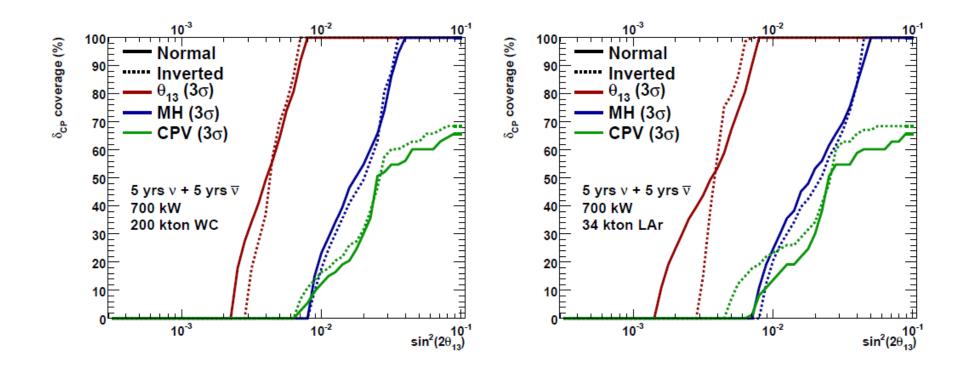


From L. Whitehead









0.0026

0.0025

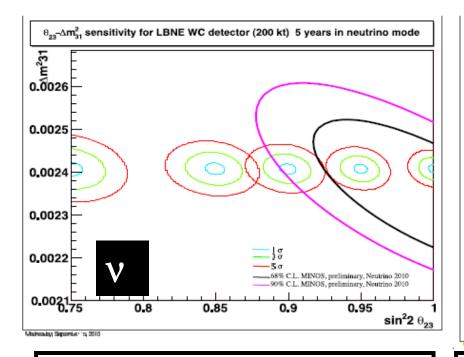
0.0024

0.0023

0.0022

0.0021

ν


0.8

-10

 $sln^22 \theta_{23}$

0.95

- ✓ 120 GeV protons on target
- ✓ 700 kW power
- ✓ 200 kTon WC
- \checkmark 5 yr v exposure
- \checkmark 2x10⁷ sec/yr
- ✓ 34 kTon LAr Detector has almost similar sensitivity

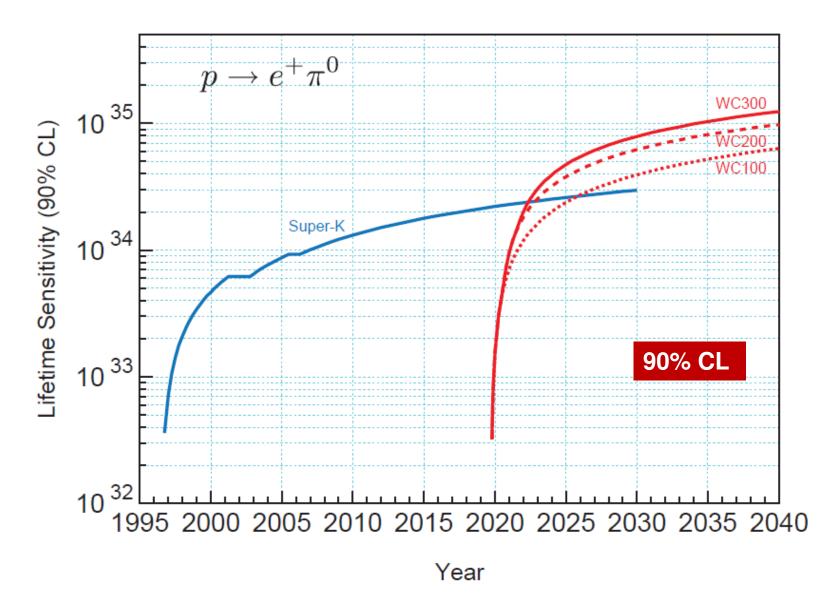
<1% measurement of $\Delta m_{31}^2 \&$ Sin²2 θ_{23} possible (at 1 σ) with either a 200kTon WC or 34 kTon LAr detector. With anti-v similar measurement possible at similar exposure.

0.85

0.9

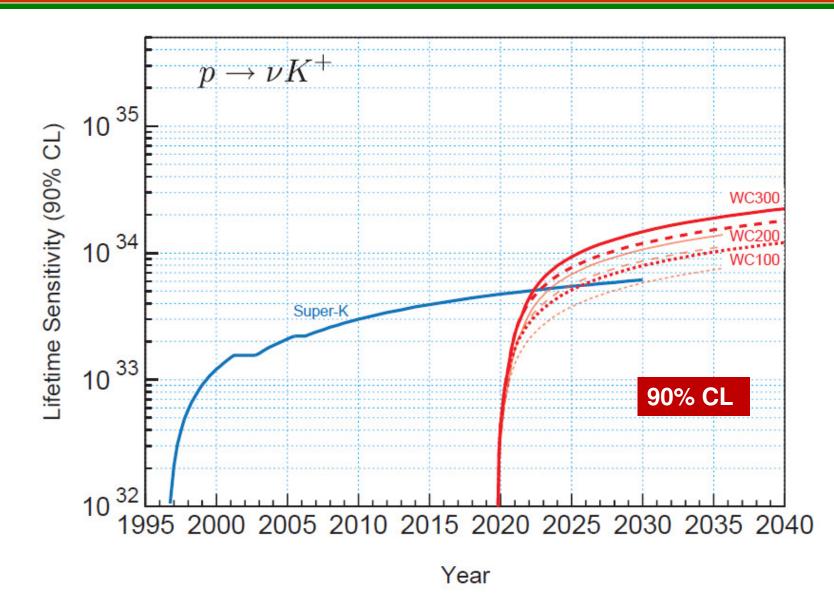
θ23-Δm231 sensitivity for LBNE WC detector (200 kt) 5 years in anti-neutrino mode

R. Guenette

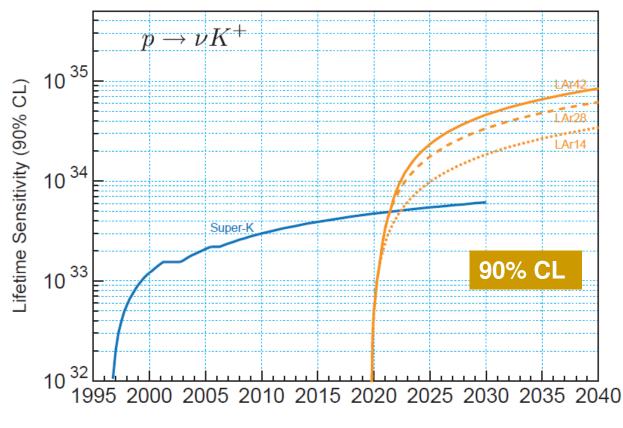

- ✓ Tests the fundamental law of Baryon conservation
- \checkmark Is predicted by wide range of GUTs
- ✓ GUT are often able to accommodate massive neutrinos as discovered in last decade.
- ✓ The unification scale is suggested experimentally and theoretically by the apparent convergence of the running coupling constant of the SM in excess of 10¹⁵ GeV.
- ✓ The Unification scale is not accessible by any accelerator experiment and thus need to be probed by virtual processes such as proton decay.
- The dominant proton decay mode to identify the likely GUT scenario gauge mediated or due to SUSY.
- ✓ Baryon number non-conservation has also cosmological consequences, such as inflation and baryon asymmetry of the Universe.

Two decay modes are favored:

 $p \rightarrow \pi^0 + e^+$ (gauge mediated – favored for WC detector) $p \rightarrow K^+ + \overline{\nu}$ (SUSY mediated – better for LAr detector)



PROTON DECAY WITH LBNE



PROTON DECAY WITH LBNE

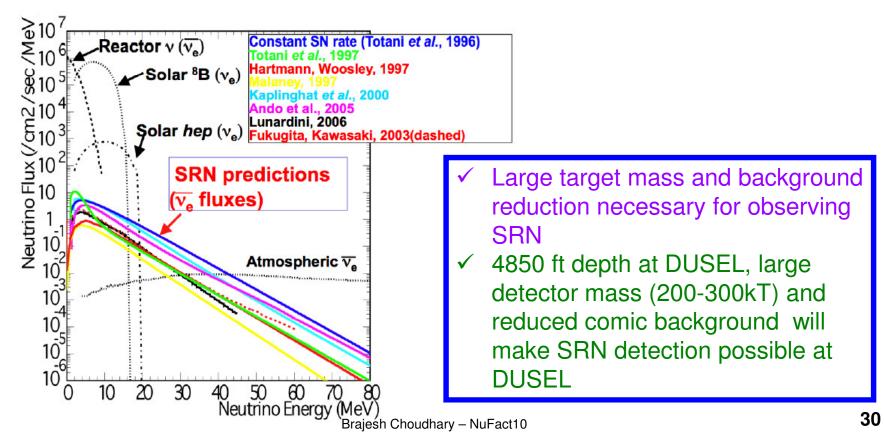
- 1. Super-K with 20+ years of data before LBNE turns-on
- 2. Liquid Argon detector significantly better for Kaon mode because 340 MeV/c K⁺ will be below Cherenkov threshold in WC and hence invisible. However in LAr a K⁺ will be directly observable by dE/dx and subsequent decay of K⁺ $\rightarrow \mu^+\nu_{\mu}$

- When a star's core collapses, ~99% of the gravitational binding energy of the proto-neutron star goes into v's of all flavors with ~MeV energy
- Timescale for neutrino escape ~ few 10's of seconds
- Core-collapse expected 2-3 per century in the Milky way.
- Number of event expected several thousands to 10's of thousands depending on the distance of the Supernova burst
- ➢ Very precise knowledge of cross-section for IBD − $v_e + p \rightarrow e^+ + n$ for WC
- With Gadolinium double coincidence almost zero background
- Positron spectrum mirrors neutrino spectrum
- > A 40% probability to observe core collapse in a 20 year run

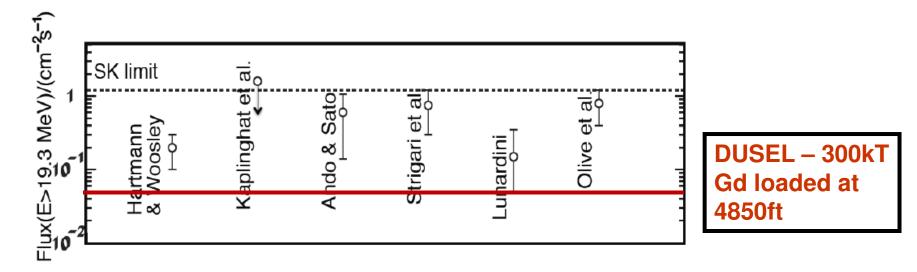
Channel	Events, "Livermore" model
$\bar{\nu}_e + p \to e^+ + n$	27116
$\nu_x + e^- \rightarrow \nu_x + e^-$	868
$\nu_e + {}^{16}\text{O} \to e^- + {}^{16}\text{F}$	88
$\bar{\nu}_e + {}^{16}\text{O} \to e^+ + {}^{16}\text{N}$	700
$\nu_x + {}^{16}\text{O} \to \nu_x + {}^{16}\text{O}^*$	513
Total	29284

100kT WC Detector + 30% PMT Coverage

SUPERNOVA BURST



- 1. Measure time integrated spectra of neutrinos
- 2. Measure evolution of the Supernova burst with neutrino spectra
- 3. Try to understand the stages of Supernova burst through distinct neutrino signals
- 4. Measure θ_{13} beyond the reach of laboratory experiments
- 5. Measure neutrino hierarchy, etc.



- ✓ Supernova relic neutrinos or the diffuse supernova neutrinos (SRN) has not been discovered so far.
- They carry unique information about one of the most dramatic processes in the stellar life-cycle, the process responsible for the production and dispersal of all the heavy elements in the universe.
- ✓ Although galactic supernovas are rare supernovas are not rare themselves

Compared to Super-K, at DUSEL cosmic muon rate is an order of magnitude lower. Super-K threshold 19.3 MeV. DUSEL can expect to go to 15.5 MeV. Will enhance signal by 40%. Addition of Gd to help further in sensitivity. Good chances of observing SRNs.

LBNE TIME LINE

- 1. LBNE is the most ambitious long-baseline neutrino project in planning and execution stage.
- 2. Will have the best reach in determining values of θ_{13} , CPV and mass hierarchy in the neutrino sector.
- Both WC and LAr detectors well suited for proton decay to an order of magnitude beyond the current limit.
- 4. Well suited for detecting Supernova burst and Supernovae relic neutrinos.
- 5. Many measurements possible with atmospheric, solar and high energy neutrinos (not discussed in this talk).
- Detector R&D for WC and LAr in progress. Detector choices may be made sometimes in 2011.
- 7. Detector construction to begin in 2014-2015.
- 8. Physics by the end of the decade.

✓ A 2.3 MW wide band beam with 120 GeV protons, aimed at a 300 kTon Water Cherenkov detector 1290 km away, during a period of 6 years – with 3 years each of v and anti-v running can achieve sensitivities at 35.

	Sin²2θ ₁₃ > 0	
Sin²2θ ₁₃ ≠0	0.004	All δ_{CP}
Sign (∆m² ₃₁)	0.014	All δ_{CP}
CP Violation	0.012	50% δ _{CP}

- ✓ If θ_{13} is large enough measure Sin²2 θ_{13} to ~5% and δ_{CP} to ~15%
- ✓ Similar sensitivities using a 50kTon LAr detector
- \checkmark A 60 GeV proton beam with 3/4th power gives similar results

