Status and results from the OPERA experiment

Tomoko Ariga on behalf of the OPERA collaboration

A. Einstein Center for Fundamental Physics LHEP, University of Bern

OPERA

Aiming the first direct detection of neutrino oscillations in appearance mode.

Full mixing and $\Delta m_{23}^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$

The light blue band indicates the OPERA allowed region (90% CL) for the above parameter values for 22.5 x 10¹⁹ pot

- Beam line: CNGS long base-line ν_{μ} beam
- Direct observation of v_{τ} events in nuclear emulsion detectors.
 - Sub-micron resolution
 - 1.25 kton of target mass

CNGS beam

< E _{Vµ} >	17 GeV
L	730 km
(v_e + \overline{v}_e) / v_μ	0.87 % *
$\overline{\nu}_{\mu}$ / ν_{μ}	2.1 % *
v_{τ} prompt	Negligible *

* Interaction rate at LNGS

Expected interactions for 22.5x10¹⁹ pot (nominal pot in 5 years): ~23600 v_{μ} CC + NC ~160 v_{e} + $\overline{v_{e}}$ CC ~115 v_{τ} CC ($\Delta m^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$) ~10 tau decays are expected to be observed (BG<1)

OPERA detector

Target areaMuon spectrometer

OPERA detector

Target area Muon spectrometer

ECC brick scanning

Parallel analysis in ~10 labs. Number of labs is increasing.

One of the brick scanning labs

For example, Swiss scanning station in Bern5 microscopes with automatic plate changers.

Event analysis in ECC brick

5 mm

Emulsion gives 3D vector data, with a few micron precision of the vertex accuracy.

The frames correspond to scanning area. Yellow short lines are measured tracks. Other colored lines are interpolation or extrapolation.

Performance of ECC brick

Momentum measurement by MCS

Linearity of momentum center

Gamma reconstruction analysis in ECC brick

This is ~35% of the total 2008-2009 run statistics, corresponding to 1.85 x 10¹⁹ pot

With the above statistics, and for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and full mixing, OPERA expects: ~ 0.5 v_{τ} events

Charm candidate events -- proof of the efficiency for τ --

- 20 charm candidate events selected by the kinematical cuts.
- 3 of them with 1-prong kink topology.
- Expected: 16.0 \pm 2.9 out of which 0.80 \pm 0.22 with kink topology
- Expected BG: ~2 events (loose cuts: work in progress to reduce BG)

Decaylength of charm decay data Phi angle charm muon copl data Entries 20 Entries 18 1120 121.5 Mean Mean 9 RMS 52.79 RMS 1096 8 6 5 4 3 0<mark>0</mark> 00 1000 2000 3000 4000 5000 20 40 60 120 140 160 180 ิกิ 100 Phi in degree **Decay in micron**

(Animation)

muon

500 um

The first v_{τ} candidate event

γl

1000 um

 $\gamma 2$

(Animation)

daughter

γ attachment to the vertices

	Distance from 2ry vertex (mm)	IP to 1ry vertex (μm) <resolution></resolution>	IP to 2ry vertex (μm) <resolution></resolution>	Prob. of attach. to 1ry vtx*	Prob. of attach. to 2ry vtx*	Attachment hypothesis
1 st γ	2.2	45.0 <11>	7.5 <7>	<10 ⁻³	0.32	2ry vertex
$2^{nd} \gamma$	12.6	85.6 <56>	22 <50>	0.10	0.82	2ry vertex (favored)

* probability to find an IP larger than the observed one

•120 \pm 20 \pm 35 MeV

• The invariant mass of the $\pi^- \gamma \gamma$ system has a value compatible with that of the ρ (770). •640 +125 -80 +100 -90 MeV

•The ρ appears in about 25% of the τ decays: $\tau \rightarrow \rho (\pi^{-} \pi^{0}) v_{\tau}$.

VARIABLE	Measured	Selection criteria
Kink (mrad)	41 ± 2	>20
Decay length (µm)	1335 ± 35	Within 2 plates
P daughter (GeV/c)	12 ⁺⁶ -3	>2
Pt daughter (MeV/c)	470 ⁺²³⁰ ₋₁₂₀	>300 (γ attached)
Missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000
φ (deg)	173 ± 2	>90

The uncertainty on Pt due to the alternative $\gamma 2$ attachment is < 50 MeV.

The event passes all the kinematical cuts required.

Background sources

• Prompt v_{τ}	~ 10 ⁻⁷ /CC
\bullet Decay of charmed particles produced in $\nu_{e}^{}$ interactions	~ 10 ⁻⁶ /CC
• Double charm production	~ 10 ⁻⁶ /CC
\bullet Decay of charmed particles produced in ν_{μ} interactions	~ 10 ⁻⁵ /CC
• Hadronic interactions	~ 10 ⁻⁵ /CC
Evaluation by using state-of-the-art FLUKA code, updated wrt the P	roposal simulation

Evaluation by using state-of-the-art FLUKA code, updated wrt the Proposal simulations. kink probabilities integrated over the v_{μ} NC hadronic spectrum yield a BG probability of: (1.9 ± 0.1) x 10⁻⁴ kinks/NC (2 mm Pb)

Hadronic interaction background study in OPERA data

• Search for "decay-like" interactions along total 9 m of hadron track. This is about a factor 8 larger than the so far scanned track length for NC events.

• Goal: ~100 m as needed to fully validate (eventually replace) the MC information.

1 cm

• 90% CL upper limit of 1.54 x 10⁻³ kinks/NC event

• The number of events outside the signal region is confirmed by MC (within the ~30% statistical accuracy of the measurement)

Statistical significance

We observe 1 event in the 1-prong hadron τ decay channel, with a background expectation (~ 50% error for each component) of:

all decay modes: 1-prong hadron, 3-prongs + 1-prong μ + 1-prong *e* :

0.045 ± 0.020 (syst) events total BG

By considering the 1-prong hadron channel only, the probability to observe 1 event due to a background fluctuation is 1.8%, for a statistical significance of 2.36 σ on the measurement of a first v_{τ} candidate event in OPERA.

If one considers all τ decay modes which were included in the search, the probability to observe 1 event for a background fluctuation is 4.5%. This corresponds to a significance of 2.01 σ .

v_e events 9 v_e candidate events have been observed.

(Animation)

Summary and prospect

• The OPERA experiment is aimed at the first detection of neutrino oscillations in appearance mode through the study of the $v_{\mu} - v_{\tau}$ channel. •The data taking in CNGS beam is going smoothly.

• The analysis of a sub-sample of the neutrino data taken in the CNGS in the 2008-2009 runs was completed, corresponding to 1.85x10¹⁹ pot out of 22.5x10¹⁹ proposed pot.

• Decay topologies due to charmed particles have been observed in good agreement with expectations, as well as several events induced by ν_e present as a contamination in the ν_μ beam.

• One muonless event showing a $\tau \rightarrow 1$ -prong hadronic decay topology has been detected. It is the first v_{τ} candidate event in OPERA, with a statistical significance of 2.36 σ (1-prong hadronic decay mode) and 2.01 σ (all decay modes).

•Analysis on 2008+2009 full sample will be completed early next year. Analysis of 2010 events is being performed in parallel.

BACKUP

Event tracks' features

TRACK NUMBER	PID	Probability	MEASUREMENT 1		MEASUREMENT		ENT 2	
			$tan\Theta_{X}$	$tan\Theta_{Y}$	P (GeV/c)	$\tan\Theta_{\rm X}$	$tan\Theta_{Y}$	P (GeV/c)
1	HADRON range in Pb/em=4.1/1.2cm	Prob(µ)≈10 ⁻³	0.177	0.368	0.77 [0.66,0.93]	0.175	0.357	0,80 [0.65,1.05]
2	PROTON	range, scattering and dE/dx	-0.646	-0.001	0.60 [0.55,0.65]	-0.653	0.001	
3	HADRON	interaction seen	0.105	0.113	2.16 [1.80,2.69]	0.110	0.113	1,71 [1.42,2.15]
4 (PARENT)			-0.023	0.026		-0.030	0.018	
5	HADRON: range in Pb/em=9.5/2.8cm	Prob(µ)≈10 ⁻³	0.165	0.275	1.33 [1.13,1.61]	0.149	0.259	1,23 [0.98,1.64]
6	HADRON: range in Pb/emul=1.6/0.5 cm	Prob(µ)≈10 ⁻³				0.334	-0.584	0,36 [0.27,0.54]
7	From a prompt neutral particle		0.430	0.419	0.34 [0.22,0.69]	0.445	0.419	0.58 [0.39,1.16]
8 (DAUGHTER)	HADRON	interaction seen	-0.004	-0.008	12 [9,18]	-0.009	-0.020	
muonless event (favored hypothesis)								

Features of the decay topology

Kinematical cuts to be passed

Event topological features (Beam view)

Simulation of the hadronic interaction BG

- Background evaluation by using state-of-the-art FLUKA code, upgrade of the Proposal simulations.
- 160 million events (0.5-15 GeV/c) of π^+, π^-, K^+, K^- , p impinging 1 mm of lead, equivalent to 160 km of hadronic track length.
- Kink probabilities evaluated by applying the same cuts as for the tau analysis.

```
kink probabilities integrated over the v_{\mu} NC hadronic spectrum yield
a BG probability of:
(1.9 ± 0.1) x 10<sup>-4</sup> kinks/NC (2 mm Pb)
```


Typical scattering distributions for : 5 GeV π^+

DATA/MC comparison: good agreement in normalization and shape

Beam test 4GeV pion 18 times track length (20m) of tau search.

Charm background

- Charm production in CC events represents a background source to all tau decay channels
- This background can be suppressed by identifying the primary lepton \rightarrow ~ 95% muon ID
- For the 1-prong hadronic channel 0.007±0.004 (syst.) background events are expected for the analyzed statistics

• Further charm BG reduction is under evaluation by implementing the systematic followdown of low energy tracks in the bricks and the inspection of their end-range, as done for the "interesting" event. For the latter we have 98-99% muon ID efficiency. By assuming that $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and full mixing, we expected:

0.54 ± 0.13 (syst) v_{τ} CC events in all τ decay channels and 0.16 ± 0.04 (syst) v_{τ} CC events in the 1-prong hadron τ decay channel

and we observed 1 event.

This result allows us to exclude at the 90% CL

 Δm_{23}^2 values > 7.5 x 10⁻³ eV² (full mixing)

Sensitivity to Θ_{13}

 E_e , missing p_T and visible energy Δm^2_{23} (eV²) OPERA Preliminary 10 -2 2.5x10-3 eV 10⁻³ Nominal intensity ----- High intensity (+50%) CNGS 10 -4 10 -3 0.06₁₀-1 10⁻² $\sin^2 2\theta_{13}$

Simultaneous fit on:

full mixing, 5 years run @ 4.5x10 ¹⁹ pot / year					
C. Sime	Signal				
(deg)	s) $v_{\mu} \rightarrow v_{\mu}$	τ→e	$\nu_{\mu}CC$	$\nu_{\mu}NC$	v _e CC
, σ, μ ε	μς				beam
9	9.3	4.5	1.0	5.2	18
7	5.8	4.5	1.0	5.2	18
5	3.0	4.5	1.0	5.2	18

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ full mixing

	$sin^2 2\Theta_{13}$	Θ_{13}
сноот	<0.14	۱I°
OPERA	<0.06	7.1°