

Accelerator Challenges and Opportunities for Future Neutrino Experiments

Michael S. Zisman Center for Beam Physics Accelerator & Fusion Research division Lawrence Berkeley National Laboratory

> NuFact10-Mumbai October 20, 2010

- Discovery of neutrino oscillations led to strong interest in providing intense beams of accelerator-produced neutrinos
 - such facilities may be able to observe CP violation in the lepton sector
 possibly the reason we're all here
- Several ideas have been proposed for producing the required neutrino beams
 - a Beta Beam facility based on decays of a stored beam of betaunstable ions
 - a Neutrino Factory based on the decays of a stored muon beam
 could serve as precursor to eventual Muon Collider
 - a Superbeam facility based on the decays of an intense pion beam
- All approaches have their advantages and disadvantages
 - all are challenging...and all will be expensive
 - EUROnu program attempting to compare all options on an equal footing

Physics Context

Neutrino Factory beam properties

 $\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Longrightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$ $\mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \Longrightarrow 50\% V_{e} + 50\% \overline{V}_{\mu}$

Produces high energy neutrinos

- Beta beam properties
 - ⁶He \rightarrow ⁶Li + e⁻ + $\overline{\nu}_{e}$
 - ¹⁸Ne \rightarrow ¹⁸F + e⁺ + ν_e

Baseline scenario produces low energy neutrinos

- Decay kinematics well known
 - minimal hadronic uncertainties in the spectrum and flux
- \cdot Electron neutrinos are most favorable to do the science

 $- \, \nu_{e}^{} \rightarrow \nu_{\mu}^{}$ oscillations give easily detectable "wrong-sign" μ

 $_{\circ}\,\text{do}$ not get ν_{e} from "conventional" neutrino beam line (π \rightarrow μ + $\nu_{\mu})$

Beta Beam

- Baseline Beta Beam facility comprises these sections
 - Proton Driver
 - °"light" SPL (≈4 GeV) and upgraded Linac 4
 - ISOL Target
 - spallation neutrons or direct protons
 - Ion Source
 - pulsed ECR
- Two concepts being explored: Low-Q version (⁶He, ¹⁸Ne)
- High-Q version (⁸Li,⁸B)

- olinac, RCS, PS, SPS
- Decay Ring
 - 。6900 m; 2500 m straight

Beta Beam (Low-Q)

• Baseline scenario from EUROnu study based on ⁶He and ^{18}Ne at γ = 100

Beta Beam (High-Q)

- \cdot Looking at option of higher Q decays to boost neutrino energy
 - ⁸Li and ⁸B at γ = 100 aimed at Gran Sasso

Neutrino Factory comprises these sections

Alternative 4 GeV NF design being explored at Fermilab

- motivated by
 - ${\scriptstyle \circ}\, \text{expectation}$ of reduced facility cost
 - energy well matched to Fermilab-DUSEL baseline
 - detector concept (magnetized TASD)
 capable of required performance at chosen energy
- ingredients same as IDS-NF design...but fewer of them
 - $_{\circ}$ less acceleration
 - \circ smaller decay ring
 - single baseline

Superbeam

- Superbeam facility is a higher-power version of today's neutrino beam facilities
 - approach is evolutionary rather than revolutionary
 - ${}_{\scriptscriptstyle 0}\,\text{but}$ nonetheless a big step forward
 - EUROnu version shown here
 - CERN to Fréjus

4 MW, 5 GeV proton beam

proton driver

130 km baseline

- A common feature of all future neutrino facilities is the requirement for substantially increased intensity
 - all current approaches to produce the requisite number of neutrinos rely on production of secondary, or even tertiary, beam
 - \Rightarrow need for intense particle sources
 - \Rightarrow need for very large detectors
- Both features represent major technical challenges

— must extend today's state-of-the-art by factor of 5-10

Viewpoint

· For this talk, I will take the point of view that

Challenges = Opportunities R&D

- Challenges related mainly to intensity requirement
 - target capable of handling 4 MW of protons
 - horn capable of handling 4 MW of protons
 - o and operating at high repetition rate (50 Hz)
 - good charge selection (beam purity)
- Target resides in close proximity to horn
 - spatial constraints favor solid, or perhaps "contained" powder target
 materials compatibility issues make Hg target impractical
 - cooling is difficult
 - high radiation environment
 - need to repair is inevitable
 - hands-on repair will not be possible

• Recent studies (Zito *et al.*, EUROnu WP2) based on

Proposed Approach-SB

- low-Z target
- multiple targets + horns
 - ${\scriptstyle \circ}\, reduces$ power deposition
 - 4 MW \rightarrow 4 x 1 MW
 - oreduces repetition-rate requirement
 - 50 Hz \rightarrow 4 x 12.5 Hz
- single-horn optics (no reflector)
- optimized horn shape

- Muons created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - low production rate
 - $_{\rm o}\,\text{need}$ target that can tolerate multi-MW beam
 - large energy spread and transverse phase space
 - ${\scriptstyle \circ}\, \text{need}$ emittance cooling
 - ${}_{\scriptscriptstyle 0}$ high-acceptance acceleration system and decay ring
- Muons have short lifetime (2.2 μ s at rest)
 - puts premium on rapid beam manipulations
 - high-gradient RF cavities (in magnetic field for cooling)
 - ${\scriptstyle \circ}$ presently untested ionization cooling technique
 - fast acceleration system
- Proposed approaches will be described

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/dx) reduces $p_{x'}$, $p_{y'}$, p_{z}
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x,y}/p_z$

- $\boldsymbol{\cdot}$ There is also a heating term
 - for SR it is quantum excitation
 - for ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance $d\varepsilon_{N} = 1 |dE_{\mu}|_{\varepsilon_{N}} \beta_{\perp} (0.014 \,\text{GeV})^2$

$$\frac{dSN}{ds} = -\frac{1}{\beta^2} \left| \frac{\mu}{ds} \right| \frac{SN}{E_{\mu}} + \frac{\mu}{2\beta^3} \frac{1}{E_{\mu}} m_{\mu} X$$
Cooling
Heating
$$\mathcal{E}_{x,N,equil.} = \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta m_{\mu} X_0} \frac{dE_{\mu}}{ds}$$

0

- prefer low
$$\beta_{\perp}$$
 (strong focusing), large X_0 and dE/ds (H₂ is best)

- Desired proton intensity for Neutrino Factory is 4 MW - e.g., 2.5 × 10¹⁵ p/s at 10 GeV or 5 × 10¹³ p/pulse at 50 Hz
- · Desired bunch length is 1-3 ns to minimize intensity loss
 - not easily done at high intensity and moderate energy

Target-NF

- Favored target concept based on Hg jet in 20-T solenoid
 - jet velocity of 20 m/s establishes "new" target each beam pulse
 magnet shielding remains an issue
- Alternatives approaches (powder or solid targets) also being pursued via EUROnu

RF-NF

- Cooling channel requires high-gradient RF immersed in a strong magnetic field
 - 805 MHz experiments indicate substantial degradation of gradient in such conditions

- Production of the required ion species at the required intensity
 - requires production, transport to ion source, ionization, bunching
 - target's ability to accommodate primary beam is sometimes limited to a few hundred kW
 - looks okay for ⁶He; ¹⁸Ne is challenging, but appears possible with ¹⁹F(p, 2n)
 - higher Z atoms are produced in multiple charge states, with the peak at 25-30% of the total intensity

- \cdot RF manipulations in transfers
 - ion source \rightarrow RCS \rightarrow PS \rightarrow SPS \rightarrow decay ring
 - process is not 100% efficient
 - $_{\rm o}\,\text{beam}$ losses represent vacuum challenge in PS
 - optimized lattice with collimation system could improve vacuum x100
 - issue considered manageable

6He

collimated

8

t[s]

6

decayed

10

12

14

- RF stacking in decay ring
 - need to stack beam in decay ring to get acceptable decay rate
 - o after 15-20 merges, about 50% of the beam is pushed outside the acceptance
 - need substantial momentum collimation scheme
 - o beam losses represent 150 kW average power load on collimators
 - peak load during bunch compression process (few 100 ms) will be at MW level

R&D Activities

- To transform challenges to opportunities, worldwide R&D efforts are under way
 - of most interest here are those of EUROnu and IDS-NF
- •Beta Beam
 - main items are ion production, collective effects, and RF issues
- Neutrino Factory
 - main items are target, cooling, and RF
- Superbeam
 - main items are target and horn

BB R&D (1)

- New concept for ⁸Li, ⁸B production proposed by C. Rubbia *et al.*
 - based on ionization cooling of ions to maintain equilibrium emittance

October 20, 2010

BB R&D (3)

- Ion source technology for re-ionizing secondary beam is being pursued
 - SEISM (Sixty GHz ECR Ion Source using Megawatt Magnets)
 - 37 GHz Gyrotron

- Slight difference at the extraction side (to check)
 Distance between maxime (00 mm) in concernment with the
- Distance between maxima (90 mm) in agreement with the design
 First experimental campaign finished

T. Lamy, WP4 Euronu Annual meeting, Strasbourg June 1st 2010

October 20, 2010

BB R&D (4)

- Radiation effects from ion decays in Decay Ring have been studied
 - magnet solutions exist

 \circ open mid-plane designs

- ${\scriptstyle \circ} \, \text{thick liners}$
- Collimation not yet studied

NF R&D

R&D program has three main thrusts

- simulation and theory
- technology development
 - $_{\rm o}\,\text{high-power target},$ cooling channel and acceleration system
- system tests of target (MERIT) and cooling (MICE)
- Recent simulation effort has focused on simplifying NF design to optimize performance and reduce costs

 work done in conjunction with IDS-NF (and EUROnu WP3)
- \cdot Technology development challenge is RF in magnetic field
- $\boldsymbol{\cdot}$ System test work focused on MICE
 - involves many international partners

MuCool R&D (1)

201 MHz cavity

- MuCool program does R&D on cooling channel components[®] in MuCool Test Area at Fermilab
 - RF cavities, absorbers
- Motivation for cavity test program: observed degradation in cavity performance when strong magnetic field present
 - 201 MHz cavity easily reached 21 MV/m without magnetic field
 - initial tests in fringe field of Lab G solenoid show some degradation

October 20, 2010

MuCool R&D (2)

- Tested pressurized button cavity at MTA FNAL + Muons, Inc.
 - use high-pressure H_2 gas to limit breakdown (\Rightarrow no magnetic field effect)

Remaining issue: What happens when high intensity beam traverses gas?

October 20, 2010

Breakdown Voltage

MICE

- Neutrino Factory (\$10²¹ v_e aimed at far detector per 10⁷-s year) or Muon Collider depends on ionization cooling
 - straightforward physics but not experimentally demonstrated
 - facility will be expensive (O(1B\$)), so prudence dictates a demonstration of the key principle
- Cooling demonstration aims to:
 - design, engineer, and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
 - place this apparatus in a muon beam and measure its performance in a variety of modes of operation and beam conditions
- Another key aim:
 - show that design tools (simulation codes) agree with experiment
 gives confidence that we can optimize design of an actual facility
- Getting the components fabricated and operating properly is teaching us a lot about both the cost and complexity of a muon cooling channel
 - measuring the "expected" cooling will serve as a proof of principle for the ionization cooling technique

- MICE includes one cell of the FS2 cooling channel
 - three Focus Coil (FC) modules with absorbers (LH $_2$ or solid)
 - two RF-Coupling Coil (RFCC) modules (4 cavities per module)
- Along with two Spectrometer Solenoids with scintillating fiber tracking detectors
 - plus other detectors for confirming particle ID and timing (determining phase wrt RF and measuring longitudinal emittance)
 - TOF, Cherenkov, Calorimeter

MICE Contributors

Many international partners contributing

Status of MICE

· Civil engineering nearly completed

- main "missing piece" is RF infrastructure for Steps 5 and 6
 - installation of RF power sources and connection of RF power to cavities

Cooling Channel Components

• All cooling channel components are now in production

Spectrometer Solenoid (Wang NMR)

CC large test coil (HIT)

CC winding (Qi Huan Co.)

Absorber (KEK)

Cavity at LBNL (Applied Fusion)

FC (Tesla Eng., Ltd.)

October 20, 2010

- EMMA testing an electron model of a non-scaling FFAG
 - aim:
 - $_{\circ}$ demonstrate feasibility of non-scaling FFAG concept
 - investigate longitudinal dynamics, transmission, emittance growth, influence of resonances
 - commissioning under way at Daresbury Lab

Muon Accelerator Program

•NFMCC and Fermilab MCTF jointly proposed a 7-year R&D plan to DOE

— successful review took place in August 2010

October 20, 2010

MAP R&D Plan

Main deliverables

- design and simulations
 - MC Design Feasibility Study (DFS)
 - intended to be a "high-end" feasibility study
 - includes associated physics and detector studies
 - engineering and costing not fully detailed
 - defines R&D program (extending beyond initial plan)
 - NF RDR (under IDS-NF auspices)
 - help with engineering and costing (select areas)
 - participate in accelerator design of various subsystems
- component development and testing
 - ${\scriptstyle \circ}$ demonstration of key technologies
 - sufficient to allow down-selection of cooling channel schemes
 - may not be able to pick unique optimal scheme, but will identify the most promising approaches
- system tests of 4D and 6D cooling
 - participate in MICE and 6D "bench test" (no beam)

Summary

 Substantial progress being made toward design of accelerator-based neutrino facilities to study CP violation in the lepton sector

- Work extending state-of-the-art in accelerator science
 - high-power targets, new cooling techniques, ion source development, rapid acceleration techniques,...
- R&D discussed here represents worldwide efforts
 - carried out in coordinated fashion internationally
 - by choice, not dictated externally
- Thanks to all my accelerator colleagues for sharing both their expertise and their enthusiasm

Final Thought

Paper studies alone are *not enough*

We need to build and test things!

October 20, 2010