Conventional Neutrino Beam Experiments: Present and Future Generations

Deborah Harris Fermilab NuFact10 October 20, 2010

Outline

- Current Generation:
 - MiniBooNE MINERvA
 - MINOS T2K
 - OPERA ICARUS
- Almost Current Generation
 NOvA
- Next Generation(s)
 - Building on existing beams: MicroBooNE, T2KK
 - New beams, new detectors: LBNE, CERN-Frejus,...
- What legacies are being handed down from one generation to the next?

20 October 2010

Goals and Strategies: From one generation to the next

- Current Generation: building foundations
 - Pinning down atmospheric mass splitting
 - Muon neutrino disappearance
 - Figuring out what "LSND signal" means
 - Electron Neutrino appearance at short baseline
 - First hopes of seeing $\sin^2 2\theta_{13}$ above zero
 - Electron neutrino appearance at $\sim 1\%$ level
 - Pinning down neutrino interactions in preparation for the goals of measuring $\sin^2 2\theta_{13}$ and beyond

Current Generation

	Moti- vattion	Beam Power (kW)	Detector	Base-line (km)	v Ener gy (GeV)	Experi- mental Method	Integrated POT so far
Mini- BooNE	v _e appr.	30 (max)	Oil Cerenkov	0.5	0.7 (Wide)	1 st max	15e20
MINOS	v_{μ} dis- appr.	350	Steel- Scint.	734	3.5 (Wide)	1 st max	11e20
OPERA	v_{τ} appr.	500	Lead- Emulsion	730	25 (Wide)	Before the 1 st max	8e19
ICARUS			LAr TPC				2e19
MINERvA	v inter- actions	350	Fine- Grained Scint.	1.0	3.5 ++ (Wide)	Nucl. Targets	12e19
T2K	v _e appr.	750 (50 so far)	Water Cerenkov+ ND280	295	0.700 (Narrow)	Off- Axis	3.4e19

20 October 2010

Ingredients for Conventional Neutrino beams

- Ingredients
 - As many protons as you can get...
 - Target
 - Horns (at least one, at most three)
 - Decay Volume
 - Hadron Absorber
 - Beamline Monitoring
- "Tales from the Front Lines"

Booster Neutrino Beam

Φ(E_v) (v/POT/GeV/cm²)

10⁻⁹

10⁻¹²

- 8 GeV protons, Beryllium target, one horn, short decay pipe
 - Enclosures for SciBooNE and MiniBooNE detectors
- Produces broad band of v_{μ} events centered at ~1.4GeV

BNB: Tales from the front line

- In operation the longest of current neutrino beamlines
- 15e20 POT as of 10/11/10
- Current horn has worked 6 years, 275M pulses
- First horn survived 100M pulses
- Showing water leak and ground faults, may need to be repaired/replaced soon
- Have to replace horn with target at same time

W. Huelsnitz, FNAL AEM, 10/11/10

20 October 2010

Neutrinos at the Main Injector Beamline

- 120GeV protons, Graphite target, two horns
- Operating since 2005, over 1e21 POT
- Flexible enough to produce peak energies from 3.5 to 10GeV
- Three planes of μ monitors, one hadron monitor at downstream end of decay pipe

20 October 2010

NuMI: Tales from the Front Line

- In 5 years, replaced both horns once, replaced target 4 times
- 3 target replacements linked to problems braising graphite to stainless steel water cooling tubes
- Extensive monitoring system provides ways to evaluate beamline conditions as problems arise

Plots and chart: J. Hylen, P. Adamson

20 October 2010

CERN to Gran Sasso Beamline

- 400GeV protons, air cooled graphite target,
 2 horns
- design power of 500kW
- 8E19 protons on target
- 2 stations of muon monitors

Figures courtesy E. Gschwendtner, NBI2010

Tales from the front line: CNGS

Gschwendtner, NBI2010

Ľ

J-PARC v Beamline

T2K: Tales from the front line

- Accumulated 3.35×10¹⁹ protons (3.28×10¹⁹ for physics data analysis) from 1/10 to 6/10
- Continuous operation ~50kW
- Short (few minutes) trials up to 100kW
- Problems with kicker magnets leading to beam center drift, all replaced this summer, minimum functionality tests successful

Slow extraction started in mid-October Neutrino beam expected to return November 15 or16 Plots:H. Kakuno NBI2010, schedule from T. Kobayashi

20 October 2010

Deborah Harris: Conventional Neutrino Beam Experiments

Neutrino Detectors

- Brief reminder of detector technologies in use
- Detector performance
- Milestones reached since NuFact09
 - Note: I am not going to talk about the neutrino oscillation or neutrino interaction surprises, that's the subject of a later talk...
 - see Sacha Kopp in the voice and appearance of Maury Goodman for oscillation results
 - See Kevin McFarland for Interaction Experiments
 - This still leaves me plenty to talk about

20 October 2010

MiniBooNE Detector

- Pure mineral oil
 - > Cherenkov:Scintillator ~ 3:1
 - > Total volume: 800 tons (6 m radius)
 - » Fiducial volume: 500 tons (5m radius)
- >New Reconstruction techniques not previously predicted:
 - >Three ring events (for charged current pi0 analysis)

<u>Charged pion tag (look for pi->mu->e chain)</u>

e candidate 20 October 2010

MINOS

ec/fr eel. Icm cintillator plus magnetic field

- v_{μ} disappearance and v_{e} appearance with 7.2x10²⁰ POT in neutrino running
- Anti- v_{μ} appearance with 1.7x10²⁰ POT in anti-neutrino running

Deborah Harris: Conventional Neutrino Beam Experiments

20 October 2010

OPERA

- 1.2kT emulsion detector
 - 146621 bricks, each 8.3kg
 - -56 (1mm) Pb sheets
 - 57 (300mm) FUJI emulsion layers
 - 2 (300mm) changeable sheets (CS)

Veto BMS: Brick Manipulating System

Debora

Spectrometer: RPC, Drift Tubes, magnet

Target Tracker

First Tau Neutrino Detected

Other interesting events from OPERA

 Charm candidates, and 6 electron neutrino candidates out of 800 located vertices (2 at right)

Deborah Harris: Conventional Realine Dean Experimental

ICARUS

- Liquid Argon TPC
- Active mass: 475x2 tons
- Fiducial mass: 600 tons
- Wire spacing: 3mm

20 October 2010

- Electron drift distance: 1.5m
- 54000 wires, 3 stereo angles
- 74 PMT's for scintillation light

Expect 6 beam v_e 's, expect 12 v_{τ} 's

CNGS Beam events in ICARUS

20 October 2010

MINERvA Detector

- Finely segmented scintillator planes read out by WLS fibers
- Side and downstream calorimetry, 3-5 ton fiducial
- Signals to 64-anode PMT's
- Several ~1ton Nuclear targets of C, Fe, Pb, in now
- Helium and water targets soon
- MINOS Detector as muon spectrometer
- See K. McFarland's talk 20 October 2010

MINERvA run has started

• Recorded 1.3e20, of that 1.4e19 in special runs to understand neutrino flux

MINERvA Muon Vertex: \overline{v}_{μ} CC Candidates with μ^+ in MINOS

- Anti-v CC candidate vertex distribution
 - GENIE 2.6.0
 - Geant4 Detector model

G. Perdue, ICHEP10

Deborah Harris: Conventional Neutrino Beam Experiments

T2K Detectors

- Far Detector: Super-Kamiokande
- Near Detectors at 280m
- P0D: optimized to study electromagnetic final states in water and scintillator
- TPC: precise tracking and momentum, plus particle identification
- FGD: water and scintillator targets

• Side electromagnetic and hadronic calorimetry, 0.2T B field

20 October 2010

T2K Highlights

- First neutrino events from J-PARC beam seen at Far detector (22 so far)
- Near Detector complex commissioned and operating, events in all neutrino targets so far

Next Generation(s)

	Moti- vattion	Beam Power (kW)	Detector	Base-line (km)	v Ener gy (GeV)	Experi- mental Method	Integrated POT so far
MINERvA	v inter- actions	350	Fine- Grained Scint.	1.0	3.5 ++ (Wide)	Nucl. Targets	11e19
T2K	v _e appr.	750 (50 so far)	Water Cerenkov+ ND280	295	0.700 (Narrow)	Off- Axis	3.4e19
NOvA	v _e appr.	700	Liquid Scint.	810	2.2 (Narrow)	Off-axis	-
Micro- BooNE	v _e appr. And LAr R&D	30	Liquid Argon TPC	≤1km	0.7 (Wide)	1 st Max	-

NOvA

- Off-axis NuMI neutrino beam, 2GeV peak energy
- 14kton liquid scintillator totally active detector

30

25

20

15

10

5

0

0

2.5

5

E_v (GeV)

v_µ CC events/kt/3.7E20 POT /0.2 GeV

energy id totally totally totally totally Medium Energy NuMI B eam Tunerates for L = 810 km0 mrad7 mrad14 mrad21 mrad

7.5

20 October 2010

Deborah Harris: Conventional Neutrino Beam Experiments

10

z (cm) 27

NOvA Progress since last NuFact

- Far detector site construction
- Full scale prototype tests
- Near Detector on Surface starting operations

Ъ

20 October 2010

MicroBooNE

- Goals: put LAr TPC in Booster Neutrino beam
 - Examine MiniBooNE excesses
 - Meaure Performance of LAr TPC in low energy neutrino beam at high statistics
 - Try to use tricks you will want for >>kton devices
 - Long drift lengths
 - Ar Purity without pumping cryostat down to vacuum

Cryostat Volume	150 Tons		
TPC Volume	90 Tons		
# Electronic Channels	~9000		
Wire Pitch	3 mm		
Electronics Style (Temp.)	JFET (120 K)		
Max. Drift Length (Time)	2.5m (1.5ms)		
Light Collection	~30 8" Hamamatsu PMTs		

Next to Next Generation Technique: Electron Neutrino Appearance

- Goals: searching for CP violation, determining the neutrino mass hierarchy
- Overall, two strategies
 - Narrow Band Beam to focus on first oscillation maximum
 - Wide band beam to see first and second max
- Strategies vary, depend on
 - Geography and existing "natural" resources
 - Status of planning for LAr TPC

20 October 2010

Next Generation and beyond...

- LBNE: Fermilab to Homestake (1290km)
 - Considering both LAr TPC and Water Cerenkov
 - Synergy with Deep Underground Science
 - detector charged with searching for proton decay as well
- T2K++: use existing J-PARC beamline, upgrade, and use second far detectors,
 - Okinoshima Island to see both maxima
 - Second very large detector at Kamioka to focus on 1^{st} max
- CERN to Frejus or elsewhere in Europe
 - Different baselines call for different far detector technologies

20 October 2010

LBNE: Fermilab to Homestake

- Progress this year in planning the development of a large undertaking:
 - New Beamline
 - New Detector

Is there Life after CNGS?

- Several ideas exist for CERN-based long baseline neutrino experiments
 100kton LArTPC x 1.6MW (HP-PS2) v run x 5year + v run x 5year
- Far detectors of Water Cerenkov or Liquid Argon TPC
- Focus on low energy beams, shorter distances: CP Violation

	PS+SPS	SpS RF	SPL+PS2+	SPL	New	Booster +
		upgrade	SPS new RF	+ PS2	HP-PS	RCS 4 MW
Machine param.		[33]		[35]	this paper	[37]
Proton energy E_p	400 GeV			50 GeV		30 GeV
$ppp(\times 10^{13})$	4.8	7	10	12.5	25	10
T_c (s)	6	7.2	4.8	2.4	1.2	$(8.33 \text{Hz})^{-1}$
Beam power (MW)	0.5	0.6	1.3	0.4	1.6	4
Global efficiency	0.8	0.8	0.8	1.0	1.0	1.0
Beam sharing	0.85	0.85	0.85	0.85	0.85	1.0
Running (d/y)	200	200	200	200	200	200
$N_{pot}/yr ~(\times 10^{19})$	9.4	11.4	24.5	77	300	1437
$E_{tot} \equiv E_p \times N_{pot}$						
(×10 ²² GeV·pot/yr)	4	4.5	10	4	15	43
E_{tot} increase						
compared to CNGS	$\times 2$	$\times 2$	$\times 4$	$\times 2$	$\times 5$	$\times 16$
					AF	arXiv:1003.1921

Slide courtesy K Sakashita, v2010

20 October 2010

Summary of Future Long Baseline Experiments

already existing or upgrade existing acc/beam-line

construct new one

	motivation	Beam Power [MW]	v beam facility	detector	baseline [km]	v energy (peak E _v)	experimental method
JPARC- Okinoshima	CPV, θ ₁₃ (hierarchy)	1.66	existing	100kton LArTPC	658	WBB (1.2GeV)	1st, 2nd max
JPARC- Kamioka	CPV , θ ₁₃	1.66	existing	540kton W.C.	295	NBB (0.7GeV)	ratio of v and v
FNAL- DUSEL	CPV, θ ₁₃ , hierarchy	0.7	need new one	~300kton WC. and/or ~50kton LArTPC	1300	WBB (3GeV)	1st, 2nd max
		2.1					
CERN- Frejus	CPV , θ ₁₃	4 (HP-SPL)	need new one	~440kton W.C.	130	on-axis low energy (0.2GeV)	ratio of v and v
CERN- Pyhasalmi	CPV, θ ₁₃ , hierarchy	1.6 (HP-PS2)	need new one	100kton LArTPC	2300	WBB (3GeV)	1st, 2nd max

20 October 2010

Lessons from Current Generation

- Getting to design power takes time and experience
 - MINOS example: $1^{st} 2$ years at ~ $\frac{1}{2}$ intensity of $2^{nd} 2$ years
 - CNGS Example: 2 years at low intensity, high intensity now
- The fluxes you assumed aren't necessarily right
 - NuMI High Energy tail 50% higher than predicted
 - MINOS Near Det. v_e background prediction 20% high
- The cross sections you assumed aren't necessarily right – MiniBooNE is seeing 20% higher $\sigma(QE)$ than expected
- Radiation shielding is harder than you imagined

Conclusions

- This has been an exciting year for conventional v beam experiment operations
 - First beam on full detector:
 - T2K, ICARUS, MINERvA
 - First v_{τ} event shown by OPERA

- NOvA Near Detector assembled, ready for data
- Oscillation and cross section results have been exciting too, to be covered in later talks
- Many lessons to take away for future plans 20 October 2010 Deborah Harris: Conventional Neutrino Beam Experiments