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What we want to learn
« Majorana?
« Absolute mass scale
» Size off3
« Mass hierarchy
o O3 = /47
« CP violation In leptons
« Anomalies (LSND, MiniBooNE ...)

Ultimately, we want to understand the physics of
neutrino mass generation and we hope, that this will
shed light onto the flavor puzzle.
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What we can learn
In the context of neutrino oscillation experiments
e sin® 2603
°* Ocp
e mass hierarchy
o O3 = 7/4, s < w/40Or a3 > 7 /47?
» Exotica (NSI, sterile neutrinos, CPT violation)

It Is very difficult to rank those measurements in their

relative importance, with exception gifi? 26,5 since
Its size has Implications beyond theory.
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Welcome to the Zoo
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 LSND confirmed? refuted? both?

« Other osclillation datasf. Bugey and CDHS?
* Low energy excess?

« 3+2 neutrinos + NSI?

« + along list of proposals to finally hunt down this
specimen
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The Hunting of the Snark

All “animals” have in common that they are less than
5 o effects and they may be all due to the
extraordinary difficulty of performing neutrino
experiments, If not:

 Improving the bound o, ,, : LENS-sterile,
zoned Gallium experiment, beta beams, short
range reactor experiments

 Direct tests of LSND using stopped pion sources:
OscSNS, LSND reloaded

 Indirect tests using neutrino beams: BooNE, new
detectors in the NuMI beamline, beta beams,
neutrino factories

P. Huber — Virginia Tech — p. 5



Neutrino oscillation



CP violation

Like in the quark sector mixing can cause CP
violation

P(vy — vg) — P(vy = v3) # 0
The size of this effect is proportional to

1
JCP — é COS (913 S1n 2(913 S1n 2(923 S1n 2(912 sin o

The experimentally most suitable transition to study
CP violation isv, <+ v,, which is only available in
beam experiments.
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Matter effects

The charged current interaction gfwith the
electrons creates a potential fQr

AZ::Q\/ﬁGF-E-ne

where—+ Is for v and— for v.

This potential gives rise to an additional phaseifor

and thus changes the oscillation probability. This has
two consequences

P(vy, — vg) — P(Vy — v3) # 0

even Ifo = 0, since the potential distinguishes
neutrinos from anti-neutrinos.
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Matter effects

The second consequence of the matter potential is the
there can be a resonant conversion — the MSW effect.
"he condition for the resonance Is

Am?~A & EEath g gGeV

res

Obviously the occurrence of this resonance depends
on the signs of both sides in this equation. Thus
oscillation becomes sensitive to the mass ordering

1% vV

Am? > 0| MSW -
Am? < 0 - MSW
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Eight-fold degeneracy

By measuring only two numbers, andn;, the
following solutions remain

e Intrinsic ambiguity for fixedx

- Disappearance determines ofyms3, | =
Ts == Amg; — —Amj,

- Disappearance determines ogmly* 2055 =
7;22 093 %7'('/2_(923

» Both transformationy,; := 7. ® 7;

For studies of CP violation the sign ambiguity
poses the most severe problems.
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Consequences for experiments

To study three flavor oscillation we need

to measure 2 out aP (v, — v.), P(v, — U),
P(v. = v,) andP(v, — 1)

more than 1 energy and 1 baseline

matter resonance ét— 8 GeV

matter effects sizable far > 1000 km

magic baselind. ~ 7, 500 km allows for a clean
measurement of the mass hierarchy

P. Huber — Virginia Tech — p. 11



Consequences for experiments

To study physics beyond three flavor oscillation we
need

» to measure 2 out aP (v, — v.), P(v,, — V),
P(v. = v,) andP(v, — 1)

* a good and large (!) near detector

+ |deally v, detection in a (large?) near detector

* magic baselind. ~ 7, 500 km allows for a clean
measurement of NSI in propagation (NC like
Interactions)

P. Huber — Virginia Tech — p. 12



Experimental limitations

As a rule of thumb, the best experiments we currently
can think of, would have

Total CC rate uncertainty of 5%

Relative (between near and far detectors) CC rate
uncertainty of 1%, with the notable exception of
low energy, <10MeV, experiments like Double
Chooz and Daya Bay

Total NC rate uncertainty of 10%
Neutrino energy resolution of 5%
10-20%7 detection efficiency in a small mass <kt

1 million events In their best detection mode,
typically v, — v,

P. Huber — Virginia Tech — p. 13



The Next Generation



The Experiments

Setup t, [yr] tslyr] PrnOr Pragee: L [km] Detector  mpe

Double Chooz - 3 8.6 GW 1.05 L. scint. 8.3
Daya Bay - 3 17.4 GW 1.7 L. scint. 80t
RENO - 3 16.4 GW 1.4 L. scint. 15.4 t
12K ) - 0.75 MW 295 Water 22.5 kt

NOvA 3 3 0.7 MW 810 TASD 15 kt

P. Huber — Virginia Tech — p. 15
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Beam upgrades

« T2K: 2015 -2016: 0.75 MW - 1.66 MW linear
Talk by K. Hasegawa, NNN 2008

 NOvVA: 03/2018-03/2019: 0.7 MW - 2.33 MW
linear, Project XProject X: resource loaded schedule
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Optimal sensitivities

MH discovery, NH (30 CL) . CPV discovery, NH (30 CL)
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PH, Lindner, Schwetz, Winter, JHEP 11 044 (2009).
This includes data from T2K with a 1.66MW beam,

NOVA with Project X, Daya Bay, RENO and Double
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2025

Knowledge in 2025 without new facilities atv CL

O3 = w/4 — for maximal mixing45° + 4°
e size off5 — if sin”® 20,53 > 0.01

« mass hierarchy — ifin* 26,5 > 0.04 for at most
30% of all CP phases

» CP violation in leptons — ifin* 26,3 > 0.02 for at
most 20% of all CP phases

 MINOS anomaly will be resolved

Even for the largest currently allowégs more than
/0% of parameter space are not accessible.

P. Huber — Virginia Tech — p. 19



Atmospheric Neutrinos



Physics with atm. neutrinos

Am3, measurement — MINOS hint for CPT
violation?

f>3 measurement — octant resolution? CPT
violation?

mass hierarchy for largd s

non-standard neutrino interaction (larher
range)

combination of beam data with atmospheric
neutrinos

sterile neutrinos?

P. Huber — Virginia Tech — p. 21



Atm. neutrino experiments

* Most effects are energy and baseline dependent
therefore, energy and angular (= baseline)
resolution for the neutrinaviz. lepton, are crucial

« Atmospheric neutrino fluxes
vy >0, UV, + 0, 2V + V) Ve < U

but many effects require flavor separation and the
ability to distinguishv /7.

Therefore, water Cerenkov detectors are sensitive
mostly tof,; related effects, only.

P. Huber — Virginia Tech — p. 22
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Mass hierarchy

solid:  true hierarchy normal
~ _ | dashed: true hierarchy inverted
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Petcov, Schwetz, NPB 740:1-22,2006.

magnetized calorimeter

¢ < E 7, low statistics
at few GeV

5 events per kt and year

S,/ Se —15% energy
res.,15° angular res.
Sheh — 5% energy res.,
5° angular res.

Shieh — ATLAS

Kopp, Linder, PRD 76 093003
(2007).
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Importance of resolution — |
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Importance of resolution — Il

solid: 5% energy resolutign solid: 5 angular resolutio
dashed:15% energy resolution dashed:15’ angular resolutio
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Petcov, Schwetz, NPB 740:1-22,2006.
A smaller but better detector may ultimately provide

the better physics!
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Superbeams



Superbeams

Neutrino beam fromr-decay

Source Oscillation Detection
CC

Vuy——— = U
V,u<:
>99% Ve% e
K
<1%

Ve & » €
ve<: vy o e
They are called 'super’
* pbeam powerr 1 MW
 detectors mass 100 kt

 running time of the experiment 10 years
* price

P. Huber — Virginia Tech — p. 28



LBNE

LBNE short for Long Baseline Neutrino Experiment

o 700kW from Fermilab

« 200kt water Cerenkov equivalent (WCE)
detector, where WCE can be either 200kt of
water Cerenkov or 33kt of liquid argon or a
combination thereof

« Far detector at Homestake mine aka DUSEL
« Potential upgrade of beam power to >2MW by
Project X

LBNE has DOE CDO approval and will go for DOE
CD1 review In the spring of 2011.

P. Huber — Virginia Tech — p. 29



EXposure

Everyone has different assumptions about
e seconds in a year
* humber of years
 detector size
» beam power (or pot)
Therefore, it is useful to introduce the concept of

detector mass [Mt] x target power [MW] x running time [107 s] .

Much of the difference between the various
superbeam proposals stems from different
assumptions about the exposure.

P. Huber — Virginia Tech — p. 30



Sensitivities
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CP violation
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figure adapted from Barger, PH, Marfatia, Winter, Phys.Re6 (2007) 0530031uber - virginia Tech — p. 32



Mass hierarchy
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figure adapted from Barger, PH, Marfatia, Winter, Phys.Re6 (2007) 0530031uber - virginia Tech - p. 33



2nd maximxum?

NH discovery reach (30) CPV discovery reach (30)
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Confusion

CPV discovery reach (30)

3B 120 Gev, (22 20 107 o Confusion theorem between NSI ar
013 at probability level.
PH, Valle, Schwetz, PRD 66:013006, 2002

*
.
o*
.

AEWEE  Limited impact at neutrino factory
Sl due to muonicr decays.

wal Campanelli, Romanino, PRD 66:11300:
N 2002.

. D
true value of sin” 26,3

PH, Kopp, arXiv:1010.3706

Superbeam experiments have nearlyrmmroduction
and hence the confusion theorem applies, including
complex NSI also leads to confusion for CPV.

P. Huber — Virginia Tech — p. 35



Summary

* New facilities are indispensable to fully exploit
the discovery of neutrino oscillation

« CP violation is never easy to measure — even for
the largest values df;5

« Mass hierarchy needs long baseline and
multi-GeV neutrinos

« Mass hierarchy is an opportunity for atmospheric
neutrinos and magnetized detectors,
see D. Indumathi’s talk

Given sufficient resources, it seems likely that
neutrino mixing can be quantitatively understood at a
level similar to the quark sector.

P. Huber — Virginia Tech — p. 36
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