

NUFACT10, XII International Workshop 20 - 25 October 2010 Tata Institute of Fundamental Research, Mumbai

Beta Beam: How do we reach wanted intensities?

Elena Benedetto

NTU-Athens & CERN

- Beta Beams, the idea, the ions, the required intensity
- How to get there
 - Production + Collection
 - Acceleration & transmission efficiency
 - Storage
- Challenges and strategies

Beta-Beams: the idea

- Aim: production of electron (anti-)neutrino beams from βdecay of radioactive ions circulating in a storage ring (P. Zucchelli, Phys. Let. B, 532 (2002)166-172)
 - Produce suitable radio-isotopes
 - Accelerate the ions
 - Store them in a racetrack Decay Ring (DR)
 - Let them β -decay (a straight section of the DR points to detector)
 - Pure v_e /anti- v_e are emitted (need a pair of β^+/β^- emitters)
 - with a known energy spectrum ($E_v < 2\gamma Q$) • in forward direction (cone $P < 1/\alpha$) Q = Reaction Energy ~ few MeV
 - in forward direction, (cone $\theta < 1/\gamma$)

1st design study makes max. use of existing CERN infrastructures.

Beta-Beams: the ions

- Need a pair of neutrino and antineutrino emitters
 - Lifetime at rest: $\tau_{1/2}$ ~1s
 - Low Z (minimize accelerated mass/charge & reduce space-charge)
 - Production rates
- Stored in a race-track Decay Ring at $\gamma = 100$
- Q = Reaction Energy

"Low-Q" isotopes

Isotope	⁶ Не	¹⁸ Ne
A/Z	3	1.8
emitter	β-	$eta^{\!$
τ _{1/2} (s)	0.81	1.67
Q (MeV)	3.51	3.0

"High-Q" isotopes

Isotope	⁸ Li	⁸ B	
A/Z	2.7	1.6	
Emitter	β-	β ⁺	
τ _{1/2} (s)	0.83	0.77	
Q (MeV)	12.96	13.92	

Beta-Beams: the 2 scenarios

• ⁶He,¹⁸Ne

Detector @ Frejus (L=130 Km)

NUFACT10, 20–25 Oct.'10, Mumbai

• ⁸Li, ⁸B (high Q)

- Longer baseline (L=~700 Km)
- Production Ring

C.Rubbia et al, NIM A 568 (2006) 475–487

E. Benedetto, NTU-Athens and CERN

Beta-Beams: the wanted intensities (1)

- Annual (10⁷s) neutrino rate x 10 years run:
 - 2.9 10¹⁸ anti-neutrinos from ⁶He
 - 1.1 10¹⁸ neutrinos from ¹⁸Ne
- Corresponding to the production (@ source) of:
 - 3(.3) 10¹³/s ⁶He
 - 2(.1) 10¹³/s ¹⁸Ne
- High Q isotopes (⁸Li, ⁸B)
 - Q ~ 3.5 x $Q_{(He,\ Ne)}\,$, γ =100 (from SPS)
 - Longer baseline: L ~ <E_v $>/\Delta m^2 ~ \gamma Q =>$ Flux ~ L⁻² ~ Q⁻²
 - Cross section ~ <E_v> ~ γQ

Need a factor ~5 more intensity than for ⁶He,¹⁸Ne

Beta-Beams: the wanted intensities (2)

- To suppress v atmospheric background
 - Ions are bunched and occupy only a fraction of the Decay Ring
 - The detector is triggered to the bunch passage
- Suppression Factor (=Duty Factor) between 0.1% and 1% is needed

$$SF = DF = \frac{Nl}{L}$$

How to reach wanted intensities?

- Store as much as possible
- Accelerate as fast as possible
- Transmission efficiency
- Production rates

Challenges and R&D

High intensity beams → Collective effects Radio-isotopes: production, collection, ionization Beam loading in RF cavities Radioprotection, pressure rise, collimation

Decay ring

- Store as much as possible
- High intensity beam
 - Nb=10¹³ ions/bunch (10ns bunch length)

Collective effects

 → see C.Hansen's talk (CERN)

 Power deposition (losses and collimation)

 → E.Wildner, E.Bouquerel (CERN)

- Atmospheric bkg suppression
 - 20 bunches in 1% of the ring

• RF cavity transient beam loading
 → G.Burt, (Cockcroft Institute, UK) started

Nth vs. R₁for DR ⁶He with BB₁

 $(1/T)^{th} = 400 Hz$

6 8 10 12 14 16 18 20 22 24

5000 ×10⁵

CB Fa

4500 4000 3500

3000

2000 1500

±€ 2500

Decay Ring

RF Stacking

- Needs multiturn injection
- After 15-20 beam merges, about 50% particles outside RF acceptance
- Momentum collimation
 - Power deposition

•Only β-decays in 1 straigth section useful

DR optimization (reduce arc length)
 → A.Chance, J. Payet (CEA), E.Wildner (CERN)

~50% lost due to momentum collimation Only ~20% useful decays

Accelerator chain

- Transmission efficiency
 - Minimize losses
- Fast acceleration & avoid "dead time"
 - PS ramp-rate: 3.6s
 - SPS ramp-rate: 3.6s for ⁶He and 6s for ¹⁸Ne
 - Decay losses: only 50% $^6\mathrm{He}$ and 80% $^{18}\mathrm{Ne}$ reach DR

Acceleration chain: Source

- ECR Source
 - Pulsed!!!
 - Re-Ionization (+1) isotopes
 - Provides 50µs pulses
 - Operating at 10Hz

```
Efficiency:
```

```
He<sup>1+</sup> ~ 30%
```

```
Ne^{1+} \sim 20\%, Ne^{+6} \sim 20\%
```

```
Li<sup>1+</sup>, B<sup>1+</sup> ~ 5%,
```


Acceleration chain: Linac

- Linac: first stage acceleration
 - Source produces 50µs pulse every 0.1s (10Hz)
 - Linac accelerates to 100MeV/nucleon
 - RFQ efficiency 90% (if carefully designed)
- Stripping foil
 - Source produces ions⁺¹ (higher efficiency)
 - Stripping foil to have He²⁺, Ne⁺¹⁰ ions
 - Ok!

- Careful RFQ design
- No particular challenges
- Efficiency: ~ 90%

Acceleration chain: RCS

- Rapid Cycling Synchrotron (RCS)
 - Very fast acceleration in 0.1s
 - Multiturn injection to accomodate 50µs pulse

Losses:

20% multiturn injection2% decay10% RF capture

Acceleration chain: PS & SPS

PS & SPS

- Accelerate beam up to γ =100
- Existing @CERN
 - They are "for free"
 - Not optimized for BetaBeams
 - Quite "long" acceleration ramp
 - Decays & "dead time"

Losses

50% decays for ⁶He 20% decays for ¹⁸Ne

Need additional 40MHz cavities in SPS

- Radioprotection OK!
- High intensity collective effects

Production: requirements

- Summing-up all losses in accelerator chain
 - Source + Linac RFQ: ~70%
 - RCS injection+capture: 30%
 - Decay losses: 20%(¹⁸Ne) 50%(⁶He)
 - Momentum collimation: up to 50%
- Only 8.4%(¹⁸Ne)-5.2%(⁶He) of produced ions is stored in the DR

We need to produce (and collect!!!) 2-3 10¹³ (x5) ions/s

Production (low Q isotopes)

- ⁶He → "standard" ISOL(DE) technique
 Linac4 or SPL or GANL, SoreQ, ...
 - 3 10¹³ ions/s
 - OK! (even more than needs)
- ${}^{18}Ne \rightarrow molten salt loop +ISOL$
 - Linac4
 - \rightarrow Studies by P.Valko and T.Stora (CERN)
 - 2 10¹³ ions/s
 - Promising but NEEDS EXPERIMENTS!!!
 - (with ISOL, factor 20 missing)
- We can avoid MW targets

NUFACT10, 20–25 Oct.'10, Mumbai E. Benedetto, NTU-Athens and CERN

ISOL target (BeO) in concentric cylinder

Production (high Q isotopes)

• ⁸Li, ⁸B isotopes

- Originally considered to overcome lack of ¹⁸Ne
- (they also have longer baseline)
- Studies started in 2009, within EUROnu(*)
- Production ring
 - Multi-passage through an internal target
 - Ionization cooling
 - \rightarrow see C.Rubbia et al, NIM A 568 (2006) 475–487
 - \rightarrow see D. Neuffer, NIM A 585 (2008) 109

(*) FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

→ E.B (NTU-Athens & CERN) M.Schaumann (RTWH Aachen)

Production (high Q isotopes)

- Production ring, challenges
 - High density gas-jet target in vacuum environment
 - Factor 10⁴ missing (from present research)
 - \rightarrow E.B. (NTU-Athens, CERN)

- Collection device investigation

- •Measurement set-up ready for ⁸Li
- •⁸B will follow...chemistry?

 \rightarrow S. Mitrofanov, T. Delbar, M. Loiselet, CRC, Louvain La Neuve

Production (high Q isotopes)

- Production ring, alternative solutions
 - Direct kinematics + solid/liquid target \rightarrow T. Weber (RTWH Aachen) and E.B., started
 - May use existing CERN ring (LEIR, AD,...) \rightarrow E.B., next
 - ...or an FFAG \rightarrow see Y. Mori, NIM A 562 (2006) 591-595
- Production ring, interaction beam-target

- Interaction beam-matter modeling
 - \rightarrow V.Vlauchoudis, D.Sinuela, E.B. (CERN)
- Cross-section measurements and angular distribution direct/indirect kinematic at low energy

→ M. Cinausero, G. De Angelis, G. Prete, (INFN-LNL), E. Vardaci (INFN-Napoli)

Production (summary)

Conclusions (1)

- Present baseline: ⁶He and ¹⁸Ne (CERN Frejus)
- Top-down approach: according to losses in the chain, identify how many ions @ the source
- Production:
 - ⁶He OK,
 - ¹⁸Ne promising, BUT need experimental verification!
- R&D for higher-Q ions ⁸Li and ⁸B (L ~ 700 km)
 - Need ~5 times more intensity, but maybe advantages of longer baseline
 - Production still challenging (but in 2006 the idea, in 2009 started investigation)

Conclusions (2)

- BetaBeams is based on existing technology and (if possible) on CERN existing infrastructures
 - ISOLDE infrastructure 😳
 - Saving on costs ③
 - PS &SPS not optimized for Beta Beams 😕
- Challenges due to high intensities are identified all along the chain:
 - Production, acceleration and storage
 - High intensity collective effects, Collimation in DR, small Duty Factor, Ion production, Radioprotection,...
- R&D is ongoing to find mitigation/alternatives

Acknowledgements

- E. Wildner, C. Hansen, G. Arduini, R.Garoby, E. Metral, A. Lachaize, M. Lindroos, T. Stora,...
- EUROnu WP4 contributing institutes and partecipants:
 - CERN, Switzerland
 - CEA, CNRS, LPSC, LNCMI, France
 - INFN, Italy
 - LLN, CRC, Belgium
- And associate partners:
 - INP, Russia
 - RTWH Aachen, GSI, Germany
 - Cockcroft Institute, UK

