The performance of the MICE muon beam line A preliminary look at the Step 1 data

Mark Alastair Rayner¹ on behalf of the MICE collaboration

The John Adams Institute, The University of Oxford

NuFact10, 21 October 2010 The Tata Institute for Fundamental Research, Mumbai

Table of contents

Introduction

2 Reconstruction

- The time of flight detectors
- 5D phase space measurement

3 Data

- Particle rate
- Calibration
- Trace space

4 Simulation

- Optics
- Emittance

5 Conclusion

The MICE beam line

The time of flight detectors

Timing resolution of a station

After a time walk correction,

$$t_{\mathsf{PMT}} \sim \mathsf{N}(0, 100 \text{ ps})$$

$$t = \frac{t_{\mathsf{Top}} + t_{\mathsf{Bottom}} + t_{\mathsf{East}} + t_{\mathsf{West}}}{4}$$
$$\sigma_t = \frac{\sigma_{\mathsf{PMT}}}{2} \approx 50 \ \mathsf{ps}$$

Particle identification

Time of flight between TOF0 and TOF1 may then be measured with resolution 71 ps

< ロ > < 同 > < 回 > < 回 >

Time difference position measurement

Position resolution of a slab

$$x = \frac{-c_{\text{eff}}(t_{+} - t_{-})}{2}$$
$$\sigma_{x} = \frac{c_{\text{eff}}\sigma_{\text{PMT}}}{\sqrt{2}}$$

Time difference position measurement

The effective propogation speed of light signals in the slabs may be measured by comparing $(t_+ - t_-)$ with the knowledge of which perpendicular slab was lit.

Illumination of the TOF detectors

同 ト イ ヨ ト イ ヨ ト

Reconstruction technique

A transfer matrix $\mathbf{M}(p_z)$ maps trace space from TOF0 to TOF1 $\begin{pmatrix} v \\ v' \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} u \\ u' \end{pmatrix}$

where, $\det \mathbf{M} \equiv 1$.

Reconstruction technique

A transfer matrix $\mathbf{M}(p_z)$ maps trace space from TOF0 to TOF1

$$\left(\begin{array}{c} v\\ v' \end{array}\right) = \left(\begin{array}{c} M_{11} & M_{12}\\ M_{21} & M_{22} \end{array}\right) \left(\begin{array}{c} u\\ u' \end{array}\right)$$

where, $\det \mathbf{M} \equiv 1$.

The angles may be deduced from the positions

$$\begin{pmatrix} u'\\v' \end{pmatrix} = \frac{1}{M_{12}} \begin{pmatrix} -M_{11} & 1\\ -1 & M_{22} \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix}$$

Phase space reconstruction technique

The time of flight detectors 5D phase space measurement

(i) Estimate the true path length by tracking

Mark Rayner, for MICE

The performance of the MICE muon beam line

(ii) Use the path length estimate to measure p_z

Mark Rayner, for MICE

The performance of the MICE muon beam line

The transfer matrix \mathbf{M} is a function of p_z

The horizontal and vertical trace space transfer matrices

At certain p, v' depends strongly on p

When $u \approx v$ it is difficult to reconstruct the angle v'

v' = A(p)u + B(p)v

Particle rate

Particle rate increases linearly with beam loss (<4.7 V ms)

Particle rate

 $\pi^- \rightarrow \mu^-$ optics at 2 V ms beam loss, 3.2 ms gate (15th June 2010)

- TOF1 hits: 26.0 hits
- TOF0-TOF1 tracks: 11.0 hits

$\pi^+ \rightarrow \mu^+$ optics at 2 V ms beam loss, 1 ms gate (16th June 2010)

- TOF1 hits: 56.5
- TOF0-TOF1 tracks: 30.5

Note: Rate across the spill gate is not linear; beware extrapolating

Inefficiencies

Reconstruction method, the presence of neutral particles, and a $1.28~\mu s$ dead time

Numbers and plot: A. Dobbs, Imperial

Introduction Reconstruction Data Simulation Conclusion

Particle rate Calibration Trace space

Time of flight for a $\pi^- \rightarrow \mu^-$ decay beam line

Time of flight using

- the February calibration, and
- the August calibration

February and August calibrations

Stability of the calibration

Legend

February calibration: **electrons positrons** August calibration: **electrons positrons**

The analysis of trace space

Work in progress

- Understanding the stability of the calibration
- Tuning Geant4 simulations to match and understand the data
- Removing bias on optical functions due to detector resolution

The agreement with Monte Carlo looks promising

ptics Emittance

How will the measured beam perform?

Optics Emittance

Evolution of the beam envelope

Matched beam, $\kappa = qB_z/(2p_z)$ $2\beta\beta'' - (\beta')^2 + 4\beta^2\kappa^2 - 4 = 0$

A Geant4 simulation of evolution of the **measured beam**

preliminary

Introduction Reconstruction Data Simulation Conclusion

Optics Emittance

preliminary

Evolution of normalized 4D beam emittance

- Non-linear emittance growth is negligible
- A thinner Pb diffuser could generate a the required emittance

Conclusion

- A highly successful data taking campaign took place in late 2009/early 2010
- Timing detectors have been calibrated to a resolution approaching 50 ps, and confirm the generation of beams dominated by muons at the required momenta
- The trace space of individual muons has been reconstructed and promising agreement is observed with Geant4 simulations
- The trace space measurement has been used to simulate the progess of a real beam through the final Step 6 cooling channel; the beam is relatively well matched, and tuning magnet currents and diffuser thickness should be sufficient to generate a well matched beam