

Injection/Extraction studies for muon FFAG

J. Pasternak, Imperial College London / RAL STFC Work in collaboration and with contributions from: M. Aslaninejad (IC), J. Scott Berg (BNL), C. Bontoiu (IC), R. Eccleston (IC*), D. Kelliher (ASTeC/STFC/RAL), S. Machida (ASTeC/STFC/RAL), S. Middleton (IC*), H. Witte (JAI-Oxford)

IC*- Imperial College UROP students

21.10.2010, NuFact'10, TIFR, Mumbai

Outline

- Introduction.
- Injection/Extraction geometries.
- Magnet aperture studies.
- Kicker system design.
- Septum studies.
- Conclusions and future plans.

Introduction

Non Scaling FFAG was proposed for the main acceleration of muon beam for the Neutrino Factory as:

- quasi-isochronous lattice enables to use fixed high frequency RF.
- linear fields gives huge DA and allows for simple magnets.
- small orbit excursion cost effective.

Current **Baseline**

			-	9		
Main problems:	Long Drift (m)	3.0	3.5	4.0	4.5	5.0
Main problems.	Cells	60	60	64	64	64
 TOF with amplitude 	D length (m)	1.903800	1.803061	2.214080	2.095687	2.251117
	D angle (mrad)	158.881	161.152	152.826	155.343	156.837
 Injection/extraction 	D shift (mm)	36.435	35.699	39.256	38.593	41.003
	D field (T)	5.02885	5.37290	4.17163	4.46908	4.20784
	D gradient (T/m)	-17.75656	-19.69323	-13.83029	-15.25579	-13.55592
	F length (m)	1.143172	0.943586	1.232769	1.042002	1.086572
	F angle (mrad)	-27.081	-28.216	-27.326	-28.584	-29.331
	F shift (mm)	9.700	10.676	11.848	12.773	13.907
	F field (T)	-1.24996	-1.55950	-1.15531	-1.41881	-1.39381
	F gradient (T/m)	19.22556	24.47768	16.01219	19.75387	18.04570
	Cavity cells	88	88	96	96	96
	RF voltage (MV)	1090.503	1050.061	1175.028	1144.173	1213.861
	turns	12.9	13.4	12.0	12.3	11.6
	D radius (mm)	115	117	127	129	137
	D max field (T)	7.1	7.7	5.9	6.4	6.1
Set of new lattices from	F radius (mm)	153	145	162	155	163
	$F \max field (T)$	4.2	5.1	3.7	4.5	4.3
cott Berg, BNL with	Circumference (m)	492	492	620	620	667
different drift lengths.	Decay $(\%)$	5.5	5.7	6.4	6.6	6.7
	Cost (A.U.)	167	175	181	188	193

TABLE III. Lattices with cell periods of a half integer number of BF periods.

21.10.2010, NuFact'10, TIFR, Mumbai

Introduction (2)

TIFR, Mumbai

Introduction (3) 0.4Black-H, Red-V before and after 0.3 ch. c. Tune /cell 0.2 0.1 0 14 16 18 20 22 24 Kinetic Energy [GeV] IDS FFAG studies includes: Chromaticity correction to reduce the TOF problem. Т F SC main magnet design using ROXIE 2.5 code. 2000 -2.5 Tracking studies using realistic field maps using Zgoubi code (work in progress). -200 mm -100 -2000 Ω mm 100

21.10.2010, NuFact'10, TIFR, Mumbai

Introduction (4)

- Feasible single turn injection/extraction is required for a realistic design of the muon IDS-FFAG operating with 3 Pi cm rad total norm. emittance.
- In order to reduce the kicker strength it is proposed to distribute them in a few cells.
- Kickers are mainly used to supress/create the separation between the "circulating" beam and the injected/extracted beam at the septum.
- Septum is used mainly to clear the beam with respect to the upstream/downstream main magnet (F).
- The septum strength determines the drift length and sets a strong constraint on the lattice design.
- Apply mirror symmetric solution to reuse kickers for both signs of muons.

Injection/Extraction geometries

		5			
lattice	3m	3.5m	4m	4.5m	5.0m
Plane (H/V)	Н	Н	Н	Н	Н
No. Kickers	3	3	2	2	2
Kicker field (T)	0.091	0.084	0.104	0.102	0.089
Kicker Polarity	+-+	+-+	+0+	+0+	+0+
Septum field (T)	2.66	1.90	1.45	1.12	0.92
lattice	3m	3.5m	4m	4.5m	5.0m
Plane (H/V)	н	н	Н	Н	Н
No. Kickers	6	6	4	4	4
Kicker field (T)	0.088	0.075	0.087	0.078	0.067
Polarity	++++	++++	++00++	++00++	++00++
Septum field (T)	5.1	3.64	2.77	2.16	1.76

Injection

21.10.2010, NuFact'10, TIFR, Mumbai

J. Pasternak

Current Baseline

Injection/Extraction geometries (2)

- Both injection and extraction are possible in the horizontal plane.
- Special magnets with larger apertures are needed in the injection/extraction regions.
- Vertical extraction was considered, but it requires special magnets with very large apertures (see next slide).
- With horizontal solutions we can avoid generating the vertical dispersion.

21.10.2010, NuFact'10, TIFR, Mumbai

Magnet aperture studies

Magnet aperture in F magnet near the injection septum. Blue is the requirement for the circulating beam, red for kicked beam and green is the final special magnet aperture.

Magnet type	Number of magnets	Radius (cm)
Normal F	116	16.3
Normal D	58	13.7
Injection F	4	20.8
Injection D	4	16.1
Extraction F	8	19.8
Extraction D	2	15.5
21.10.2010.	J. Pasternak	

21.10.2010, NuFact'10, TIFR, Mumbai

Magnet aperture in F magnet before the extraction septum.

Magnet aperture in D magnet rules out the vertical extraction.

IDS Kicker - Pulses

from 3 proton bunches at the target.

21.10.2010, NuFact'10, TIFR, Mumbai

IDS Kicker

- Geometry
 - Aperture: 0.3x0.3 m² (needs an update)
 - Yoke: 120 mm
 - Length: 4.4 m
- Field: 100 mT (to add margins)
- Current: 29 kA
- Magnetic energy: 917 J
- Inductance (single turn): 5.1 uH
- Impedance matching
 - Add capacitors

Travelling Wave Kicker

- Need to add capacitance
- Low impedance is required
 - V_{max}=60 kV
 - Current: 30 kA
- Large aperture (long) kicker = large inductance
- Substantial capacitance addition required (by putting plates)
 - Estimate: C_{1 Sheet}=1x10⁻⁸F
 - $C = \epsilon_0 \cdot S/d$
 - S=1 m² (too large?)
 - d=1 mm (too small?)
- You can also add external capacitors.

Realistic kicker design for RDR!

21.10.2010, NuFact'10, TIFR, Mumbai

Current pulses in 3 kicker sections – "travelling wave" using PSPice

TIFR, Mumbai

Septum studies

- We are using COMSOL and perform 2D simulations.
- The work started with the basic "window frame" geometry.
- The goal of the study was to limit the field leakage from the septum to the circulating beam region.
- Initial target of 4 T for the septum from beam dynamics studies turned out to be very difficult!
- We studied other schemes with more complicated yoke geometries and different yoke materials.
- The "correcting colil" approach was not very successful.
- The use of the advanced material and yoke shape turned out to be important.

Septum geometry

- •Starting point of the study was a basic "C-shape" septum magnet.
- •Iron was introduced all around the circulating beam.
- •Iron was replaced by a special material with high saturation limit (see next slide).
- •Chamfer was introduced.

21.10.2010, NuFact'10, TIFR, Mumbai

Magnetic Materials for Septum

From www.vacuumschmelze.de

21.10.2010, NuFact'10, TIFR, Mumbai

Field leakage

TIFR, Mumbai

Field in the septum and the circulating field region

21.10.2010, NuFact'10, TIFR, Mumbai

J. Pasternak

Summary and future plans

- The IDS baseline was updated in order to allow for realistic injection/extraction.
- The drift length (5 m) is dictated by the achievable septum field (~2T).
- Horizontal injection/extraction schemes were selected, as they require smaller increase of aperture in special magnets placed in the injection/extraction regions.
- The kicker system was designed and looks feasible, but the hardware tests would be needed to demonstrate the life-time of critical components (switches, capacitors etc.).
- The realistic design of the kicker is needed (RDR).
- 2D simulations of the field leakage from the septum limits the magnetic field to 2 T.
- We need to upgrade to 3D simulations (for RDR).