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Abstract. Obtaining a unified description of the quasi-degenerate neutrino mass spectrum together with the hierarchical
charged fermions is a challenging task. In this talk, we discuss two distinct possible scenarios leading to such spectrain
the supersymmetricSO(10) grand unified framework. Consistency of both scenarios is demonstrated through detailed fits
to fermion masses and mixing angles, all of which can be explained with reasonable accuracy in a model with the most
general Yukawa sector ofSO(10). The origin of large neutrino mixing angles is linked to neutrino mass degeneracy in both
the scenarios.
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INTRODUCTION

Neutrino oscillation experiments over the years have
unveiled the facts that neutrinos are massive, with very
small measured mass squared differences, and contrary
to the quark sector, large flavor mixing. Unfortunately,
such experiments cannot tell us about the overall scale
of neutrino masses and no other laboratory experiment
has unambiguously detected such a scale so far. At
present, the most stringent constraint on the neutrino
mass scale comes from cosmological observations. Re-
cent results from the WMAP and surveys of large scale
structure have set a limit on the sum of neutrino masses
∑mi ≤ 0.3−2 eV [1]. All these observations thus allow
a possibility in which all three neutrinos masses are
nearly degenerate (m1 ≃ m2 ≃ m3 ≡ m0), having a quasi-
degenerate massm0 in the range 0.1− 0.7 eV. There
exists an interesting link between the quasi-degenerate
neutrino mass spectrum and the largeness of neutrino
mixing angles. The mixing angles remain undefined in
the exact degenerate limit. A small perturbation that
leads to splittings in neutrino masses can also stabilize
all or some of the mixing angles to large values. So the
theory, which predicts quasi-degeneracy, has a built-in
mechanism to explain large mixing angles. Nevertheless
the construction of such a theory or framework which
obtains a quasi-degenerate neutrino mass spectrum
within the conventional picture of neutrino mass gen-
eration is non-trivial. This becomes more challenging
in unified approaches likeSO(10) models due to their
quark-lepton unifying nature. In this talk, we discuss
SO(10)-based scenarios leading to hierarchical charged
fermions and quasi-degenerate neutrino masses.

The renormalizable supersymmetric theories based on

the SO(10) group are quite powerful in constraining
the fermionic mass structures. The standard fermions
are assigned to the 16 dimensional representation of the
SO(10) group and they can obtain masses through sym-
metric couplings with 10 and126 and antisymmetric
couplings with the 120 dimensional representation of
the Higgs fields. Neutrino masses arise in these mod-
els either from the vacuum expectation value (vev) of
the left-handed triplet (type-II seesaw) or from the right-
handed triplet (type-I seesaw) Higgs components of126
field. Starting with a supersymmetricSO(10), an effec-
tive minimal supersymmetric standard model (MSSM) is
obtained by assuming fine-tuning, which keeps only two
Higgs doublets light. Further, the electroweak symmetry
is broken after these light MSSM doublets acquire vev
and they then generate the fermion masses. The result-
ing mass formulae for different fermion masses can be
suitably written as [2, 3]

Md = H + F + G , Mu = r(H + sF + tuG),

Ml = H −3F + tlG , MD = r(H −3sF + tDG),

ML = rL F , MR = r−1
R F (1)

and the light neutrino mass matrix is given by

Mν ≡ M
II
ν +M

I
ν = rLF − rRMDF−1MT

D (2)

where H,F and G arise from the fermionic Yukawa
couplings to 10,126 and 120 Higgs fields respectively.
r,s, tu, tl , tD,rL andrR are complex parameters.

Quasi-degenerate Neutrino Spectrum

Depending on which seesaw mass term dominates
in eq.(2), a quasi-degenerate neutrino spectrum can be
obtained with the following assumptions.



Type-II seesaw dominance

It was pointed out long ago [4, 5] that eq.(2) can pro-
vide an interesting framework for quasi-degenerate neu-
trinos if the type-II seesaw term dominates over the type-
I contribution. In this approach, a degenerate neutrino
spectrum can be obtained with an assumption

F = c0 I (3)

whereI is an identity matrix in generation space. The
sub-dominant type-I contribution can then lead to the
neutrino mass differences and large neutrino mixing an-
gles. This simple and attractive scenario is realizable
only if the type-II contribution dominates, which is not
always the case. In fact many detailed studies [6] of the
minimal model find that parameter space favored by the
overall fit to fermion masses suppresses the type-II con-
tribution compared to type-I. An alternative possibility is
that both degeneracy and its breaking arise from a single
source, namely type-I seesaw mechanism.

Type-I seesaw dominance

Obtaining degenerate neutrinos through type-I seesaw
requires a peculiar structure for the right-handed neu-
trino mass matrix. It has been pointed out recently that
such structure can arise from the application of the min-
imal flavor violation hypothesis to the lepton sector [7].
Following such a strategy, quasi-degenerate neutrinos in
type-I dominatedSO(10) models can be obtained by im-
posing

F = a H2 (4)

Without loss of generality, we can express the mass
matrices in (1) in anSO(10) basis with diagonalH. This
can be done by the replacements

H → DH and H2
→ DHV ∗DH (5)

whereDH is a diagonal matrix with real elements and
V is a symmetric unitary matrix.G retains its antisym-
metric form. Implementing ansatz (4), the light neutrino
mass matrix (2) in a diagonal basis ofH is given by

M
I
ν = rRr2

a (V −6saDH + tD(GD−1
H V

−VD−1
H G)+O(s2, t2

D)) (6)

Retaining only theH contribution to the Dirac neutrino
mass matrixMD, the above equation implies a degenerate
neutrino mass spectrum. It is interesting to note that in
this limit

• Correctb − τ unification is obtained which is fa-
vored by the observations extrapolated at the GUT
scale.

• The CKM matrix is unity while the neutrino mixing
angle is determined fromV . As was pointed out in
[8], the diagonalisation ofV leads to two arbitrary
angles (θ23, θ12) and vanishingθ13.

Thus ansatz (4) can lead to a correct description of the
quark and leptonic mixing angles to zeroth order. Fur-
ther, the contributions from126 and 120-plets induce
nonzero quark mixing angles and reproduce the correct
mass spectrum of light fermions. It is shown in reference
[3] that the proposed ansatz (4) can be obtained in ef-
fectiveSO(10) theory from an extended model based on
the three generations of the vectorlike fermions and an
O(3)×U(1) flavor symmetry.

NUMERICAL ANALYSIS

We now discuss the viability of fermion mass relations of
eq.(1) with ansatz (3) and (4) through detailed numerical
study. We carried out aχ2 analysis separately in each of
these two cases. Theχ2 function is constructed as

χ2(α j) = ∑
i

(

Xi(α j)−Oi

σi

)

(7)

whereXi are the fermion masses and mixing angles as
complex nonlinear functions of parametersα j calculated
at the GUT scale.Oi(σi) are the input mean values
(1σ errors) of respective observables extrapolated at
MGUT =2× 1016 GeV for tanβ=10. The list of such
input values in the quark sector is given in [2]. We
included the RG evolution in the neutrino mass matrix
and obtained its low energy form [3]. For input values of
neutrino masses and lepton mixing angles, we used the
updated low energy values given in [9]. Then the data
are fitted by minimizing theχ2 function with respect to
parametersα j using an algorithm based on the downhill
simplex method.

The results of the minimization obtained assuming
type-I seesaw dominance and ansatz (4) are displayed
as solution 1 and 2 in table(1). Solution 3 corresponds
to the solution obtained assuming type-II seesaw dom-
inance followed by ansatz (3). All three solutions pro-
vide a good fit over the entire fermion spectrum and are
acceptable from a statistical point of view. The best fit
value of χ2 = 2.038 is obtained for type-I dominated
quasi-degenerate neutrino spectrum which fits all observ-
ables within. 0.9σ . The obtained fit in the type-II case
χ2 = 6.0 is also acceptable, however, not as good as in
the case of a pure type-I seesaw. The predictions of vari-
ous observables are shown in bold fonts. Clearly, all solu-
tions predict large CP-violation in the lepton sector. The
initial value of θ13 was zero as discussed in the previ-
ous section. This becomes nonzero but remains small in



TABLE 1. The best fit solutions for fermion masses and mixing obtainedassuming the type-I seesaw dominance
(solutions (1) and (2)) and type-II seesaw dominance (solution(3)). Various observables and their pulls obtained at the
minimum are shown (See text for details). The bold faced quantities are predictions of the respective solutions.

Solution 1 Solution 2 Solution 3
No. Observables Fitted value Pull Fitted value Pull Fitted value Pull

1 md [MeV] 0.653677 -0.917861 0.207819 -2.00532 0.868041 -0.395023
2 ms [MeV] 17.5885 -0.386821 21.6923 0.402361 12.2829 -1.40714
3 mb [GeV] 1.11131 0.418721 1.05832 -0.046348 1.25634 1.69141
4 mu [MeV] 0.462718 0.0847896 0.450825 0.00549932 0.450489 0.0032611
5 mc [GeV] 0.210603 0.0136849 0.211727 0.0695654 0.210393 0.00324503
6 mt [GeV] 63.6891 -0.832404 67.6155 -0.658038 102.325 0.883371
7 me [MeV] 0.358503 0.00969691 0.358506 0.0206782 0.358502 0.00503107
8 mµ [MeV] 75.6719 0.00734514 75.6711 -0.0083064 75.6709 -0.0111809
9 mτ [GeV] 1.29219 -0.00814429 1.29223 0.0218404 1.29217 -0.0244576
10 ∆m2

sol/∆m2
atm 0.0303514 0.050109 0.0303237 0.0377877 0.0302538 0.00659421

11 m0 [eV] 0.31 - 0.17 - 0.36 -
12 sinθ q

12 0.224205 -0.0592102 0.224306 0.00359473 0.224154 -0.0913125
13 sinθ q

23 0.0351308 0.023704 0.0350426 -0.0441173 0.0351436 0.033571
14 sinθ q

13 0.00319336 -0.0132867 0.00315871 -0.0825897 0.00326199 0.123983
15 sin2θ l

12 0.319801 -0.0619079 0.321124 0.0187774 0.321168 0.0214673
16 sin2θ l

23 0.481942 0.313909 0.436492 -0.178126 0.439779 -0.14255
17 sin2θ l

13 0.0195266 - 0.00288176 - 0.0356836 -
18 δCKM[◦] 67.7227 0.247333 56.4935 -0.134071 49.7146 -0.429864
19 δPMNS[

◦] 53.98 - -66.99 - -25.33 -
20 α1[

◦] 146.55 - -59.31 - 137.71 -
21 α2[

◦] -89.88 - 162.41 - -33.44 -

χ2 2.038 4.684 6.0

all three solutions displayed. However, almost the entire
range ofθ13 is found compatible as shown by all three
solutions. The overall scale of degenerate neutrino mass
m0 is determined using the observed value of∆m2

atm.
The values ofm0 for all three solutions are seen to be
≫

√

∆m2
atm showing the consistency of ansatz. The pre-

dictions of m0 are particularly interesting from an ex-
perimental point of view as they can be probed directly
by KATRIN experiment (sensitivitym0 < 0.2 eV) in the
near future [10].

CONCLUSION

It is indeed possible to obtain the quasi-degenerate neu-
trino mass spectrum together with hierarchical charged
fermions in anSO(10) grand unified framework. Quasi-
degenerate neutrinos arise in such a framework in two
distinct possibilities based on purely type-I and the other
on the mixture of type-II and type-I seesaw mechanism
if they are supplemented with ansatz (4) and (3) re-
spectively. Detailed numerical analysis shows that these
ansatz are capable of explaining the entire fermionic
spectrum and not just the quasi-degenerate neutrinos.
Further the large neutrino mixing angles emerge as a con-
sequence of neutrino mass degeneracy in both the cases.
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