

Beta Beams, EUROnu WP4

Beta Beam Challenges:

Collective Effects

Christian Hansen 2010/10/08

Many thanks to: E. Benedetto, A. Chancé, K. Li, E. Metral, N. Mounet, G. Rumolo, B. Salvant & E. Wildner

- Motivation
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Motivation
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Motivation
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

Duty Factor

- To suppress atmospheric background detectors can only be open short time periods
 - <u>Suppression Factor</u>, SF = opened time ratio of the detector
- The DR will be filled only with short bunches so that neutrinos are send only when the detector is opened
 - <u>Duty Factor</u>, DF = filled ratio of the Decay Ring

Ζ

F

٩

>

Duty Factor = Suppression Factor

Duty Factor

- To suppress atmospheric background detectors can only be open short time periods
 - <u>Suppression Factor</u>, SF = opened time ratio of the detector
- The DR will be filled only with short bunches so that neutrinos are send only when the detector is opened
 - Duty Factor, DF = filled ratio of the Decay Ring

Accumulation

- Assume about 2el3 ¹⁸Ne and ⁶He ions/sec can be produced
- Then about 2.4ell¹⁸Ne and 4.9ell⁶He are injected into the DR per bunch
- Due to collimation and radioactive decay the number of ions per bunch saturates to

3.lel2 ¹⁸Ne 4.0el2 ⁶He

and ions per bunch:

Ζ F ব > F Σ

Sensitivity

- "Merging" gives ~2m long bunches $\rightarrow \epsilon_1 = 43.3 (14.5) \text{ eVs for }^{18}\text{Ne} (^6\text{He})$
- 20 bunches from SPS to DR
 - → SF = 20 · 2m / 6911m = 0.58%

Fernandez

 With intensities shown in previous slide there are OK sensitivities between 0.1% and 1%:

Good, BUT: What about Collective Effects?

- Motivation
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Motivation
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

BB Collective Effects Studies

- Instability studies are a crucial part of the Beta Beam project, since
 - High intensity ion beams are foreseen
 - Collective Effects could limit the final performance
- Will study all ions and all machines
 - So far only ¹⁸Ne and ⁶He in the DR
- Will study all possible reasons for instabilities
 - So far only
 - Laslett's tune shifts

and

Transverse Resonance Broad Band Impedance

Ш

>

_

F

U

Ш

_ _

C

BB Collective Effects Studies

So far all studies based on EURISOL FP6 parameters

Parameters	Description	DR 18Ne	DR ⁶ He
Z	Charge Number	10	2
A	Mass Number	18	6
h	Harmonic Number	924	924
C [m]	Circumference	6911.6	6911.6
p [m]	Magnetic Radius	155.6	155.6
Yer	Gamma at Transition	27.00	27.00
VRF [MV]	Voltage	1.196c+01	2.000e+01
dB/dt [T/s]	Magnetic Ramp	0.00	0.00
Y	Relativistic Gamma	100.0	100.0
Smax	Maximum Momentum Spread	2.50e-03	2.50e-03
Erest [MeV]	Rest Energy	16767.10	5605.54
M	Number Bunches per Batch	20	20
L_b [m]	Full Bunch Length	1.970	1.970
Nh	Number Ions per Injected Bunch	2.35e+11	4.87c+11
NB	Average Number Ions per Bunch	3.10e+12	4.00c+12
mr	Merges Ratio	20	15
I1/2 [S]	Half Life at Rest	1.67	0.81
T _c [s]	Revolution Time	3.60	6.00
0,	Horizontal Tune	22.23	22.23
õ.	Vertical Tune	12.16	12.16
$\langle \hat{\beta} \rangle_r [m]$	Average Horizontal Betatron Function	148.25	148.25
$\langle \beta \rangle_{\rm y} [m]$	Average Vertical Betatron Function	173.64	173.64
$\langle D \rangle_{r} [m]$	Average Dispersion	-0.60	-0.60
É,	Horizontal Chromaticity	0.0	0.0
E.	Vertical Chromaticity	0.0	0.0
$\varepsilon_{N}(1\sigma) [\pi m \cdot rad]$	Normalized Horizontal Emittance	1.48c-05	1.48e-05
$\varepsilon_{N}(1\sigma) [\pi m \cdot rad]$	Normalized Vertical Emittance	7.90c-06	7.90c-06
El (full) [eVs]	Full Longitudinal Emittance	42.89	14.36
br [cm]	Horizontal Beam Pipe Size	16.0	16.0
by [cm]	Vertical Beam Pipe Size	16.0	16.0
$\rho_{res}[\Omega m]$	Resistivity	1.0e-07	1.0e-07

TABLE 2.	Input parameters	from previous	Beta Beam Decay	Ring design	report [10].
----------	------------------	---------------	-----------------	-------------	--------------

ABLE 3.	Assumed	impedance	input	parameters.
---------	---------	-----------	-------	-------------

Parameters	Description	DR 18Ne	DR ⁶ He
0	Longitudinal Quality Factor	1.00	1.00
ω _{r.} [GHz]	Longitudinal Angular Resonance Frequency	6.28	6.28
$Z_{\parallel}/n \left[\Omega\right] = \lim_{\omega \to 0} \frac{ Z(\omega) }{\omega/\omega_{m}}$	Contraction of the second s	10.00	10.00
$R_{s,\parallel}$ [MΩ] = $\frac{ Z/n Q\omega_{r} }{\omega_{r}}$	Longitudinal Shunt Impedance	0.231	0.231
Q	Transverse Quality Factor	1.00	1.00
$\omega_r \perp [GHz]$	Transverse Angular Resonance Frequency	6.28	6.28
$R_{s,\perp}[M\Omega/m]$	Transverse Shunt Impedance	20.00	20.00

Data Base:

http://j2eeps.cern.ch/beta-beam-parameters/

TABLE 4. Calculated values.

		DR 18Ne	DR ⁶ He
$r_0 [\mathrm{m}] = r_p Z^2 / A$	Ion Radius	8.53e-18	1.02e-18
$E_{tot} [\text{GeV}] = \gamma \cdot E_{rest}$	Total Energy	1676.71	560.55
$\beta = \sqrt{1 - 1/\gamma^2}$	Relativistic Beta	1.00	1.00
$\eta = (1/\gamma_{tr})^2 - (1/\gamma)^2$	Phase Slip Factor	1.27e-03	1.27e-03
$T_{rev} \left[\mu s \right] = C / (\beta c)$	Revolution Time	23.0558	23.0558
$R[m] = C/2\pi$	Machine Radius	1100.02	1100.02
ω_{rev} [MHz] = $2\pi/T_{rev}$	Angular Revolution Frequency	0.27	0.27
$\sigma_{\delta} = \delta_{max}/2$	1 Sigma Momentum Spread	1.25e-03	1.25e-03
$\tau_b [ns] = L_b / (\beta c)$	Full Bunch Length	6.57	6.57
$\hat{I}[A] = ZeN_B/\tau_b$	Peak Current	755.80	195.04
$I_b[A] = ZeN_B/T_{rev}$	Beam Current	0.22	0.06
$\varepsilon_l^{2\sigma} [eVs] = \frac{\pi}{2} \beta^2 E_{tot} \tau_b \delta_{max}$	2 Sigma Longitudinal Emittance	43.27	14.46
$Q_s = \sqrt{\frac{hZeV \eta \cos \phi_t }{2\pi \beta^2 E_{out}}}$	Synchrotron Tune	0.00	0.00
$\omega_s [kHz] = \dot{Q}_s \cdot \omega_{rev}$	Synchrotron Angular Frequency	1.00	1.00
$\omega_x [MHz] = Q_x \cdot \omega_{rev}$	Horizontal Betatron Angular Frequency	6.06	6.06
$\omega_{y} [MHz] = Q_{y} \cdot \omega_{rev}$	Vertical Betatron Angular Frequency	6.06	6.06
$\omega_c [\text{GHz}] = \beta c / b_{\min(x,y)}$	Cut-Off Angular Frequency	1.87	1.87
$\Delta Q_{E} = \xi_x \delta_{max} Q_x$	Horizontal Tune Shift due to Chromaticity	0.0	0.0
$\Delta Q_{\xi} = \xi_{y} \delta_{max} Q_{y}$	Vertical Tune Shift due to Chromaticity	0.0	0.0
ω_{ξ_x} [MHz] = $\xi_x Q_x \omega_{rev} / \eta$	Horizontal Chromatic Angular Frequency	2.38e+02	2.38e+02
ω_{ξ_y} [MHz] = $\xi_y Q_y \omega_{rev} / \eta$	Vertical Chromatic Angular Frequency	1.30e+02	1.30e+02

Thursday, October 21, 2010

Ш

>

⊢

C

ш

Π

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

Laslett's Tune Shifts

- Coulomb Forces
 - within the bunch; "Direct Space Charge"
 - between bunch and pipe; "Image Field"

(Assuming perfect conductive beam pipe, for resistive beam pipe Resistive Wall Impedance studies necessary)

Antoine

can cause change in number betatron oscillations per turn

- These Tune Shifts, ΔQ , could in-stabilize the beam if they cross resonances
- A "rule of thumb for synchrotrons with short cycles":

if
$$|\Delta Q| < 0.2$$

normally no severe instability

Laslett's Tune Shifts

Tune shifts due to **Direct Space Charge** and **Image Fields** are described by "Laslett's Equations"

SC	DR ¹⁸ Ne	DR ⁶ He
$\Delta \mathbf{Q}_{dsc_{\mathbf{x}}}$	-0.030	-0.005
$\Delta \mathbf{Q}_{dsc_{y}}$	-0.069	-0.011
$\Delta \mathbf{Q}_{\mathbf{x}}^{incoh}$	-2.97e-02	-4.59e-03
$\Delta \mathbf{Q}_{\mathbf{y}}^{incoh}$	-6.86e-02	-1.06e-02
$\Delta \mathbf{Q}_{\mathbf{x}}^{cohp}$	-1.27e-04	-1.96e-05
$\Delta \mathbf{Q}_{y}^{^{\mathrm{coh}p}}$	-2.32e-04	-3.59e-05
$\Delta {\bf Q}_{\rm x}^{\rm coh np}$	-4.55e-05	-7.05e-06
$\Delta \mathbf{Q}_{\mathbf{y}}^{cohnp}$	-8.32e-05	-1.29e-05
	SC $\Delta \mathbf{Q}_{dsc_x}$ $\Delta \mathbf{Q}_{dsc_y}$ $\Delta \mathbf{Q}_x^{incoh}$ $\Delta \mathbf{Q}_x^{incoh}$ $\Delta \mathbf{Q}_y^{coh p}$ $\Delta \mathbf{Q}_x^{coh p}$ $\Delta \mathbf{Q}_y^{coh np}$ $\Delta \mathbf{Q}_y^{coh np}$ $\Delta \mathbf{Q}_y^{coh np}$	SC DR 18 Ne ΔQ_{dsc_x} -0.030 ΔQ_{dsc_y} -0.069 ΔQ_x^{incoh} -2.97e-02 ΔQ_x^{incoh} -6.86e-02 $\Delta Q_x^{coh p}$ -1.27e-04 $\Delta Q_y^{coh p}$ -2.32e-04 $\Delta Q_x^{coh np}$ -4.55e-05 $\Delta Q_y^{coh np}$ -8.32e-05

- ➡ For DR (y=100)
 - $|\Delta Q_{DSC}| << 0.2$
- DR not a short cycle (ions could stay ~lmin) → "rule of thumb" maybe not applicable → Might need a deeper DSC study
- Image Fields turned out to have even less effects

Ŋ

F

Ш

Ŋ

Laslett's Tune Shifts

Tune shifts due to **Direct Space Charge** and Image Fields are described by "Laslett's Equations"

	SC	DR ¹⁸ Ne	DR ⁶ He
$DR \rightarrow$	$\Delta \mathbf{Q}_{dsc_{x}}$	-0.030	-0.005
	$\Delta \mathbf{Q}_{dsc_y}$	-0.069	-0.011
	$\Delta \mathbf{Q}_{\mathbf{x}}^{incoh}$	-2.97e-02	-4.59e-03
	$\Delta \mathbf{Q}_{\mathbf{y}}^{incoh}$	-6.86e-02	-1.06e-02
	$\Delta \mathbf{Q}_{\mathbf{x}}^{\text{coh p}}$	-1.27e-04	-1.96e-05
	$\Delta \mathbf{Q}_{y}^{coh p}$	-2.32e-04	-3.59e-05
	$\Delta \mathbf{Q}_{\mathbf{x}}^{\text{coh np}}$	-4.55e-05	-7.05e-06
	$\Delta \mathbf{Q}_{y}^{\text{coh np}}$	-8.32e-05	-1.29e-05

- ➡ For DR (γ=100)
 - $|\Delta Q_{DSC}| << 0.2$
- DR not a short cycle (ions could stay ~Imin) → "rule of thumb" maybe not applicable → Might need a deeper DSC study
- Image Fields turned out to have even less effects

• Note also; $\Delta Q_{DSC_{x,y}} \propto 1/\gamma^2$ since for relativistic beams the repulsive **E forces** are cancelled by the contracting **B forces**

For PS (low γ) ΔQ_{DSC} could be crucial (to be investigated)

Ŋ

⊢

F

Ш

Ŋ

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

Resonance Impedance

- Wake Fields (time domain; W(t)) can
 - be trapped in pipe cavities
 - cause "Resonance Impedance"
- Resonance Impedance (frequency domain; $Z(\omega) = \mathcal{F}[W(t)]$),
 - in the Transverse plane can be modeled by an RLC circuit as:

- For low Quality Factor ($Q \approx I$) the Wake Field is short lived and the impedance is "Broad Band"

C

Ш

L

ш

 \mathbf{Y}

٩

Resonance Impedance

- Wake Fields (time domain; W(t)) can
 - be trapped in pipe cavities
 - cause "Resonance Impedance"
- Resonance Impedance (frequency domain; $Z(\omega) = \mathcal{F}[W(t)]$),
 - in the Transverse plane can be modeled by an RLC circuit as:

- For low Quality Factor ($Q \approx I$) the Wake Field is short lived and the impedance is "Broad Band"
- Will show results from *"Transverse Resonance Broad Band Impedance"*

C

Ш

Ŀ

ш

 \mathbf{Y}

٩

≥

, _____, ____,

Shunt Impedance

• The "Shunt Impedance", R_{\perp} , is the main parameter in the RLC model of the Resonance Impedance

$$Z_{\perp}(\omega) = \frac{\left(R_{\perp}\right)\frac{\omega_r}{\omega}}{1 + iQ\left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)}$$

Modeling existing machines the same way we get

	PS	SPS	LHC	LHC (no collimators)
<mark>R⊥ [M</mark> Ω/m]	3	20	30	2

Will use these two as examples

C

Ш

L

ш

 \mathbf{V}

٩

Intensity Threshold

Instabilities caused by $Z_{\perp}(\omega)$ are described by different theories depending on the intensity regime

> Mode Inst. TMC Inst. $(N_B)^{th}$ Individual modes of the bunch can cause Transverse Mode Coupling Instabilities with very short "rise times" normally instabilities, described by "simple" models like Sacherer's Equation modeled by simulations

- Important to find N_{b}^{th} since that is absolute maximum number ions we can have per bunch: \mathbf{V}
 - Will define N_{b}^{th} as the intensity that gives instabilities with very short rice times (optimistic approach) (i.e. when we have strong Transverse Mode Coupling)
 - But also for longer rice times (pessimistic approach) (i.e. when we have not so strong Transverse Mode Coupling)

()

ш

ட

Ш

٩

Intensity Threshold

Instabilities caused by $Z_{\perp}(\omega)$ are described by different theories depending on the intensity regime

> Mode Inst. TMC Inst. (N_B)th Individual modes of the bunch can cause Transverse Mode Coupling Instabilities with very short "rise times" normally instabilities, described by "simple" models like Sacherer's Equation modeled by simulations

- Important to find N_{b}^{th} since that is absolute maximum number ions we can have per bunch: \mathbf{V}
 - Will define N_{b}^{th} as the intensity that gives instabilities $(1/T)^{th} = 400Hz$ with very short rice times (optimistic approach) (i.e. when we have strong Transverse Mode Coupling)
 - + But also for longer rice times (pessimistic approach) (i.e. when we have not so strong Transverse Mode Coupling) $(1/7)^{th} = 20HZ$

()

ш

ட

Ш

٩

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Beta Beam Overview
- Collective Effect Studies
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - + HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

3 Tools

- Three different ways to find N_bth:
 - By using the peak current values as inputs to a formula for coasting beams one obtains a theoretical equation for the bunch intensity limit, which we will call the "Coasting Beam Equation":

$$N_{B_{x,y}}^{th} = \frac{32}{3\sqrt{2}\pi} \frac{R|\eta|\epsilon_l^{2\sigma}\omega_r}{\langle\beta\rangle_{x,y}} \frac{1+\omega_{\xi_{x,y}}/\omega_r}{\Re\left[Z_{\perp_{x,y}}^{BB}\right]_{max}}$$

E. Métral, CERN, Overview of Single-Beam Coherent Instabilities in Circular Accelerators

Next Slides

- A theoretical program, "MOSES"
 - A multi-particle tracking program, "HEADTAIL"

MOSES

- MOSES is a theoretical program
 - It solves a dispersion integral equation
- It gives the growth rate (inverse of the rise time) for different "bunch modes"

Y.H.Chin CERN-

LEP-TH/88-05

((Ι/τ)th = 400Hz) or pessimistic ((Ι/τ)th = 20Hz) approach

C

Ш

Ŋ

Σ

-<

⊢

4

Ш

Т

MOSES

- MOSES is a theoretical program
 - It solves a dispersion integral equation
- It gives the growth rate (inverse of the rise time) for different "bunch modes"

Y.H.Chin CERN-

LEP-TH/88-05

Intensity limit, N_bth, depends on optimistic
 ((Ι/τ)th = 400Hz) or pessimistic ((Ι/τ)th = 20Hz) approach

C

Ш

Ŋ

Σ

-<

H

- In HEADTAIL a bunch of multi-particle is tracked
 - It is sliced longitudinally
 - At each impedance location each slice leaves a wake field behind and gets a kick by the field generated by the preceding slices
 - The bunch is then transferred to the next impedance location via a transport matrix

G. Rumolo et ali,

CERN-SL-

Note2002-036-AP

N_{el} bunch slice

 $\mathbf{N}_{\mathbf{b}}^{th}$ is given by the growth of the bunch oscillation

Thursday, October 21, 2010

ſ

Ш

C

Σ

_

- In HEADTAIL a bunch of multi-particle is tracked
 - It is sliced longitudinally
 - At each impedance location each slice leaves a wake field behind and gets a kick by the field generated by the preceding slices
 - The bunch is then transferred to the next impedance location via a transport matrix

G. Rumolo et ali,

CERN-SL-

Note2002-036-AP

N_{el} bunch slice

 $\mathbf{N}_{\mathbf{b}}^{th}$ is given by the growth of the bunch oscillation

Thursday, October 21, 2010

ſ

Ш

C

Σ

MOSES & HEADTAIL

- Despite two totally different approaches "MOSES" and "HEADTAIL" has been successfully benchmarked both with each other and with data
- E. Métral, CERN, E.g. scans over ε_l , f_r and ξ ; Overview of Single-**Beam Coherent** Instabilities in Σ **Circular Accelerators** 14 25 16 CB formula, RC CB formula, 0.2, RC 12 Q 20 ā Q 10 HT, RC HT, 0.2, RC à 12 CB formula Nb^(h) [10¹⁰ A HT, RC, SC A HT, 0.3, RC 9 2 15 Nbth [10¹⁰ 10 HT 8 HT, FC, SC HT. 0.2, RC, No RF 8 5g 10 A MO * HT, 0.2, FC 6 + HT, FC HT, 0.2, FC, SC MO, RC 2 2 0.6 0.2 0.8 0.2 0.4 0.6 0.5 1.5 25 Longitudinal emittance [eVs] Vertical chromaticity (dQy / Qy) / (dp / p) Resonance frequency [GHz]
 - However, both have mostly been used with Protons So before we use HEADTAIL and MOSES for the lons in the Beta Beams, let's start with Protons...

Ŋ

Ш

Ŋ

٩

F

 \square

٩

ш

Τ

f_r Scan for Protons in DR

Ŋ Ш Ŋ Σ -٢ ⊢ ব Ш Т

Strong instabilities, $I/\tau > 400Hz$, starts at about same $N_b{}^{th}$ for MOSES and HEADTAIL

f_r Scan for Protons in DR

C Ш Ŋ Σ ٩ F \square ব Ш Ι

Strong instabilities, $I/\tau > 400Hz$, starts at about same N_b^{th} for MOSES and HEADTAIL

• Weaker instabilities, $I/\tau > 20Hz$, could show up for low N_b^{th} according to MOSES \rightarrow discrepancies

Due to weak mode coupling and decoupling

→ Should be seen by HEADTAIL also → under investigation

- Beta Beam Overview
- Collective Effects
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Beta Beam Overview
- Collective Effects
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

Back to Ions

- Let's apply HEADTAIL and MOSES to ⁶He and ¹⁸Ne
- Will see if the required N_{b}^{th} can be achieved for different longitudinal emittances, ϵ_{I} , of the bunch and different shunt impedances, R_{\perp} , of the machine
- These two programs have however never been used like this for ions (as far as we know) so development of new procedures (and thoroughly tests of these) necessary:
 - Possibility of bunches with ¹⁸Ne and ⁶He was added to HEADTAIL
 - We get the ion equivalent threshold from MOSES by $N_b{}^{th} = N_b{}^{th} / Z$ (see back-up slide)

Ι

C

Ш

ľ

Ι

E_{I} Scan for 18Ne (1/T)th = 400Hz

E_{I} Scan for 18Ne (1/T)th = 20Hz

$\mathbf{E}_{\mathbb{I}}$ Scan for ⁶He (1/T)th = 400Hz

\mathbf{E}_{I} Scan for ⁶He (I/T)th = 20Hz

$\mathbf{E}_{\mathbb{I}}$ Scan for ⁶He (1/T)th = 20Hz

\mathbb{N}_b th vs. \mathbb{R}_1 in $\mathbb{D}\mathbb{R}$

- ⁶He: Even if R_{\perp} is $2M\Omega/m N_B^{th} = 4.0el 2$ could not be reached by changing ϵ_i , due to the SF < 1%
- ¹⁸Ne: $N_B^{th} = 3.1el2$ seems beyond the horizon ...
- Let's find required \mathbf{R}_{\perp} to allow \mathbf{N}_{B}^{th}

Thursday, October 21, 2010

$\mathbb{N}_{b}^{\text{th}}$ vs. \mathbb{R}_{\perp} in $\mathbb{D}\mathbb{R}$

- ⁶He: Even if R_{\perp} is $2M\Omega/m N_B^{th} = 4.0el 2$ could not be reached by changing ϵ_i , due to the SF < 1%
- ¹⁸Ne: $N_B^{th} = 3.1el2$ seems beyond the horizon ...
- Let's find required \mathbf{R}_{\perp} to allow \mathbf{N}_{B}^{th}

Thursday, October 21, 2010

$\mathbb{N}_{b}^{\text{th}}$ vs. \mathbb{R}_{\perp} in $\mathbb{D}\mathbb{R}$

- ⁶He: Even if R_{\perp} is $2M\Omega/m N_B^{th} = 4.0el 2$ could not be reached by changing ϵ_i , due to the SF < 1%
- ¹⁸Ne: $N_B^{th} = 3.1el2$ seems beyond the horizon ...
- Let's find required \mathbf{R}_{\perp} to allow N_B^{th}

Thursday, October 21, 2010

- Beta Beam Overview
- Collective Effects
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds
- Conclusion

- Beta Beam Overview
- Collective Effects
 - Laslett's Tune Shifts
 - Wakefield Instabilities
 - HEADTAIL & MOSES
 - Intensity Thresholds

Conclusion

Conclusion

- Direct Space Charge effect will not limit the performance of the Decay Ring (Laslett's Equations)
- We have a very challenging upper limit of the DR's Transversal Shunt Impedance, R_{\perp} :
 - I0 times smaller than LHC (without collimators) for ¹⁸Ne
 - ... based on HEADTAIL and MOSES studies
- This study, that was completely based on parameters from "FP6", suggests a re-optimization of the Beta Beam design

Note under preparation: <u>http://chansen.web.cern.ch/chansen/PUBLICATIONS/bbCollective.pdf</u> SVN: <u>http://svnweb.cern.ch/world/wsvn/bbcollective</u>

Ζ

Ŋ

U

Ζ

Π

To $\mathbb{D}_{\mathbb{O}}$

Study Beta Beam "Cocktails" (suggested by A. Donini, WP6)

- Specially	ΨՒ	1e/3 2	$\mathbf{x} \mathbf{\phi}_{He}^{T}\mathbf{Z}$			
SETUP	γ	Ions	Fluxes $[10^{18}]$	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$
CERN-Frèjus, 3	100	⁶ He	$ar{\Phi}_0 imes 2$	2	1×10^{-3}	No Sensitivity
Ref. [1]		¹⁸ Ne	$\Phi_0/5$	8		

- Same study in longitudinal plane $Z_{||}(\omega) = \frac{n_{||}}{1 + iQ\left(\frac{\omega_r}{\omega}\right)}$
 - Ongoing HEADTAIL simulations, but can't use MOSES since only for ⊥
- Same with Narrow Band

 $\frac{\omega}{\omega}$

- Same with Resistive Wall Impedance
- Same with SPS, PS and ⁸Li & ⁸B

Ζ ເງ U Ζ ך ז

Backup Slides

Input Parameters for Protons

arameters	Description	DR p			DR p
Z	Charge Number	1	$r_0 [m] = r_0 Z^2 / A$	Ion Radius	1.53e-1
4	Mass Number	1	$E = [GeV] = v_e E$	Total Engrav	03.93
h	Harmonic Number	924	Liot [OCV] = P. Liest	Total Energy	95.65
C [m]	Circumference	6911.6	$\beta = \sqrt{1 - 1/\gamma^2}$	Relativistic Beta	1.00
0 [m]	Magnetic Radius	155.6	$\eta = (1/\gamma_{tr})^2 - (1/\gamma)^2$	Phase Slip Factor	1.27e-0
hr	Gamma at Transition	27.00	$T_{rev}[\mu s] = C/(\beta c)$	Revolution Time	23.055
RF [MV]	Voltage	2.000e+01	$R[m] = C/2\pi$	Machine Radius	1100.02
iB/dt [T/s]	Magnetic Ramp	0.00	() $[MH_2] = 2\pi/T$	Angular Revolution Frequency	0.27
Y	Relativistic Gamma	100.0	$\sigma_{rev} [Mill] = 2\pi/T_{rev}$	1 Signa Momentum Spread	1 750 0
Smax	Maximum Momentum Spread	3.50e-03	$O_S = O_{max}/2$	Toll Durch Longth	1.750-0
Erest [MeV]	Rest Energy	938.27	$\tau_b [\text{ns}] = L_b/(\rho c)$	Full Bunch Length	5.34
4	Number Bunches per Batch	1	$I[A] = ZeN_B/\tau_b$	Peak Current	120.07
-b [m]	Full Bunch Length	1.600	I_b [A] = ZeN_B/T_{rev}	Beam Current	0.03
Vb	Number Ions per Injected Bunch	4.87e+11	$\varepsilon_{e}^{2\sigma}$ [eVs] = $\frac{\pi}{2}\beta^{2}E_{ext}\tau_{b}\delta_{max}$	2 Sigma Longitudinal Emittance	2.75
VB	Average Number Ions per Bunch	4.00e+12	hZeV n cos d		
n _r	Merges Katio	000000000000000000000000000000000000000	$Q_s = \sqrt{\frac{2\pi B^2 E_{sr}}{2\pi B^2 E_{sr}}}$	Synchrotron Tune	0.0063
1/2 [8]	Hay Lye at Kest	999999999999.90	$\omega_{s} [kHz] = O_{s} \cdot \omega_{rev}$	Synchrotron Angular Frequency	1.72
	Revolution Time	6.00	(0, [MHz] = 0, 0)	Horizontal Retatron Angular Frequency	6.06
2x	Horizontal Tune	12.23	$(0, [MH_2] = 0, 0)$	Vertical Relation Angular Frequency	6.06
(B) [m]	Average Harizontal Patatron Eurotian	149.25	$(CH_z) = g_y \cdot \omega_{rev}$	Cut Off Angular Frequency	1.97
$\beta_x [m]$	Average Vertical Relation Function	173.64	$\omega_c [GHZ] = \rho c / \delta_{min(x,y)}$	Cur-Off Angular Frequency	1.0/
$(D)_{n}$ [m]	Average Dispersion	-0.60	$\Delta Q_{\xi_x} = \zeta_x o_{max} Q_x$	Horizontal Tune Shift due to Chromaticity	0.00e+0
	Horizontal Chromaticity	0.00	$\Delta Q_{\xi_y} = \xi_y \delta_{max} Q_y$	Vertical Tune Shift due to Chromaticity	0.00e+0
	Vertical Chromaticity	0.00	$\omega_{\rm E} [{\rm MHz}] = \xi_x Q_x \omega_{\rm rev} / \eta$	Horizontal Chromatic Angular Frequency	0.00e+0
$E_{V}(1\sigma) [\pi m \cdot rad]$	Normalized Horizontal Emittance	1.48e-05	$\omega_{\rm E} \left[{\rm MHz} \right] = \xi_{\rm e} O_{\rm e} \omega_{\rm em} / n$	Vertical Chromatic Angular Frequency	0.00e+0
$E_{V}(1\sigma) [\pi m \cdot rad]$	Normalized Vertical Emittance	7.90e-06	wy truth - gyzywrev/ 1	rented chromatic ringular rrequency	0.00010
(full) [eVs]	Full Longitudinal Emittance	14.36			
pr [cm]	Horizontal Beam Pipe Size	16.0			
by [cm]	Vertical Beam Pipe Size	16.0			
Ores [Q m]	Resistivity	1.0e-07			

TABLE 9. Assumed input parameters.

Parameters	Description	DR p
Q	Longitudinal Quality Factor	1.00
ω _{r,} [GHz]	Longitudinal Angular Resonance Frequency	6.28
Z_{\parallel}/n [Ω]		10.00
$R_{s,\parallel}$ [MΩ] = $\frac{ Z/n Q\omega_r}{\omega_r}$	Longitudinal Shunt Impedance	0.231
Q	Transverse Quality Factor	1.00
$\omega_{r,\perp}$ [GHz]	Transverse Angular Resonance Frequency	6.28
$R_{s,\perp}[M\Omega/m]$	Transverse Shunt Impedance	20.00

Thursday, October 21, 2010

 \mathbf{V}

C

4

m

MOSES modes

- Maximum number modes are used for MOSES:
 - Head Tail Modes: [-10, 3]
 - Number Radial Modes: 13
 but still might not always find
 the crucial modes (those that couple)
- Could explain the discrepancy
 - A method to find the crucial modes is under development

ſ

Ш

C

Σ

–

۷

F

٩

Ш

Т

MOSES modes

- Maximum number modes are used for MOSES:
 - Head Tail Modes: [-10, 3]
 - Number Radial Modes: 13
 but still might not always find
 the crucial modes (those that couple)
 - Could explain the discrepancy

-1/τ / (ω,,,Q) vs. I for f, = 0d5 [GHz] (DR p with BB,)

I_b [mA]

1.5

0.5

-0.5

-1.5

|/τ / (ω_{rev}**Q**_s)

NUS =0.601E42

ſ Ш C Σ ۷ 4 Ш Т

MOSES modes

- Maximum number modes are used for MOSES:
 - Head Tail Modes: [-10, 3]
 - Number Radial Modes: 13
 but still might not always find
 the crucial modes (those that couple)
- nd ouple) cy $L_{h}[mA]$

-1/τ / (ω,,,Q) vs. I for f = 0d5 [GHz] (DR p with BB)

NUS = 1401E42

- Could explain the discrepancy
 - A method to find the crucial modes is under development

ſ

Ш

C

Σ

4

 \square

4

Ш

Т

To $\mathbb{D}_{\mathbb{O}}$

- Same study in longitudinal plane
 - Ongoing, but

$$Z_{||}(\omega) = \frac{R_{||}}{1 + iQ\left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)}$$

- MOSES is only for Transversal
- Keil Schnell does not seem to hold in our regime

Back to Ions

- Let's apply HEADTAIL and MOSES to ⁶He and ¹⁸Ne
- We will scan over some parameters, ε_l , f_r and ξ , around the working point (shown by grey arrow \bigwedge) to see if we can improve $N_b{}^{th}$ significantly
- For the Beta Beam Studies the possibility of bunches with ¹⁸Ne and ⁶He was added to HEADTAIL
- Assume that MOSES has same Zelb dependency as Sacherer's formula:

$$\frac{1}{\tau} \Big)_{\perp_{x,y}}^{m,n} = \frac{-1}{|n|+1} \frac{ZeI_b C \langle \beta_{x,y} \rangle \omega_{rev}}{4\pi E_{tot} L_b} \frac{\sum_{p=-\infty}^{\infty} \Re \left[Z_{\perp}(\omega_p) \right] h_{|n|}(\omega_p - \omega_{\xi})}{\sum_{p=-\infty}^{\infty} h_{|n|}(\omega_p - \omega_{\xi})}$$

then we get the ion equivalent threshold by $N_b^{th} = N_b^{th} / Z$

Ι

C

Ш

Ľ

Ι

Back to Ions

- Let's apply HEADTAIL and MOSES to ⁶He and ¹⁸Ne
- We will scan over some parameters, ε_l , f_r and ξ , around the working point (shown by grey arrow \bigwedge) to see if we can improve $N_b{}^{th}$ significantly
- For the Beta Beam Studies the possibility of bunches with ¹⁸Ne and ⁶He was added to HEADTAIL
- Assume that MOSES has same Zelb dependency as Sacherer's formula:

$$\left(\frac{1}{\tau}\right)_{\perp_{x,y}}^{m,n} = \frac{-1}{|n|+1} \underbrace{\underbrace{ZeI_bC\langle\beta_{x,y}\rangle\omega_{rev}}_{4\pi E_{tot}L_b}}_{4\pi E_{tot}L_b} \underbrace{\sum_{p=-\infty}^{\infty} \Re\left[Z_{\perp}(\omega_p)\right]h_{|n|}(\omega_p - \omega_{\xi})}_{\sum_{p=-\infty}^{\infty} h_{|n|}(\omega_p - \omega_{\xi})}$$

then we get the ion equivalent threshold by $N_b^{th} = N_b^{th} / Z$

Growth Rate From Eq. of Motion $\ddot{y} + (Q_v \omega_{rev})^2 y = 0$ $\ddot{y} + (Q_v \omega_{rev})^2 y = Ky$ $y(t) = A_1 e^{i(Q_y + \Delta Q_y)} \omega_{revt} + A_2 e^{-i(Q_y + \Delta Q_y)} \omega_{revt}$ $\Delta Q_{\rm v} = -K/\left(2Q_{\rm v}\omega_{\rm rev}^2\right)$ $\bar{y}(t) = Ae^{i(Q_y + \Delta Q_y)\omega_{rev}t}$ $= Ae^{i(Q_y + \Re[\Delta Q_y])\omega_{rev}t}e^{-\Im[\Delta Q_y]\omega_{rev}t}$ $1/\tau \equiv -\Im \left[\Delta Q_{v} \right] \omega_{rev}$

MOSES

- MOSES is a theoretical program
 - It solves a dispersion integral equation
- It gives the $Im[\Delta Q]$ and $Re[\Delta Q]$ for different bunch modes and bunch intensities

Y.H.Chin CERN-

LEP-TH/88-05

SOLODING SOLODI

• $Im[\Delta Q]$ is connected with the "Rise Time", τ , of the instability with $I/\tau = -Im[\Delta Q]\omega_{rev}$ (see backup slide)

Thursday, October 21, 2010

C

Ш

Ŋ

Σ

-<

F

٩

Ш

Τ

MOSES

- MOSES is a theoretical program
 - It solves a dispersion integral equation
- It gives the $Im[\Delta Q]$ and $Re[\Delta Q]$ for different bunch modes and bunch intensities

Y.H.Chin CERN-

LEP-TH/88-05

- $Im[\Delta Q]$ is connected with the "Rise Time", τ , of the instability with $I/\tau = -Im[\Delta Q]\omega_{rev}$ (see backup slide)
- When the "Growth Rate", I/T, starts to grow too much gives $I_b{}^{th}$ and then $N_b{}^{th} = T_{rev}I_b{}^{th} / Ze$

Thursday, October 21, 2010

C

Ш

Ŋ

Σ

-<

F

٩

Ш

Ι

• **HEADTAIL** is a multi-particle tracking program

- A bunch of macroparticles is sliced longitudinally
- Impedance is assumed to be localized at a few positions around the ring

N_a bunch slices

G. Rumolo et ali,

CERN-SL-

Note2002-036-AP

The bunch is then transferred to the next impedance location via a transport matrix

• HEADTAIL gives e.g. the vertical mean beam center shown here for different bunch intensities

Ŋ

• HEADTAIL gives e.g. the vertical mean beam center shown here for different bunch intensities

Thursday, October 21, 2010

Ŋ