

Beta Beams, EUROnu WP4

New RF Simulations for the Injection into the Beta Beam Decay Ring

A. Chancé, <u>C. Hansen</u>, D. Heinrich 2010/10/08

- Motivation
- Method
- Results
- Conclusion

- Motivation
- Method
- Results
- Conclusion

Reminder

- To determine the three remaining neutrino oscillation parameters, θ_{13} , δ_{cp} and sign(Δm_{31}^2), precision measurements on a pure and intense neutrino beam are required
- One of the proposed Next Generation Neutrino Oscillation Facilities is Beta Beams:
 Description Provides Let
 - Accelerate radioactive ions to high γ
 - Let them β -decay in a Decay Ring (DR) with a straight section \rightarrow
 - v-beam with opening angle 1/γ and with known energy and v-species

This gives only (anti) neutrinos from β^+ (β^-) decay:

 $\begin{array}{l} n \rightarrow p + e^- + \bar{\nu}_e \\ \text{Signal: } \bar{\nu}_e \rightsquigarrow \bar{\nu}_\mu \\ p \rightarrow n + e^+ + \nu_e \\ \text{Signal: } \nu_e \rightsquigarrow \nu_\mu \end{array}$

Ζ

Π

F

4

>

F

Two Baselines

- There are currently two different baselines (both with γ=100) under investigation
- ⁶He & ¹⁸Ne: L ≈ 130 km

⁸Li & ⁸B: L ≈ 650 km

Thursday, October 21, 2010

Duty Factor

- To suppress atmospheric background detectors can only be open short time periods
 - <u>Suppression Factor</u>, SF = opened time ratio of the detector
- The DR will be filled only with short bunches so that neutrinos are send only when the detector is opened
 - <u>Duty Factor</u>, DF = filled ratio of the Decay Ring

Duty Factor = Suppression Factor

Duty Factor

- To suppress atmospheric background detectors can only be open short time periods
 - <u>Suppression Factor</u>, SF = opened time ratio of the detector
- The DR will be filled only with short bunches so that neutrinos are send only when the detector is opened
 - <u>Duty Factor</u>, DF = filled ratio of the Decay Ring

Ζ

F

٩

>

Sensitivity for $^{18}\mathrm{Ne}$ & $^{6}\mathrm{He}$

- Sensitivity depends on
 - Neutrino Fluxes &
 - Suppression Factor
- Assuming the *nominal flux for ¹⁸Ne and ⁶He*, we get

I.e. in case of nominal flux we can only fill between
 0.1% and 1% of the Decay Ring

Sensitivity for ⁸B and ⁸Li

I.e. ⁸B and ⁸Li would need a factor 5 higher flux (Already anticipated by A. Blondel in NUFACT07)

Thursday, October 21, 2010

DR Injection for $^{18}\mathrm{Ne}$ & $^{6}\mathrm{He}$

- Due to Direct Space Charge in the PS (DSC effect is worse for lower y) ions needs to be merged in the DR to achieve enough flux
- An injection scheme was developed for ¹⁸Ne & ⁶He :
 - Off-momentum injection
 - Capture after 1/4 sync. turn
 - Asymmetric and symmetric merging
 - Collimation
- The proportion of ions that decayed in the DR was 40% (20%) for ⁶He (¹⁸Ne)
- This scheme needed to be restudied for ⁸B and ⁸Li

- Motivation
- Method
- Results
- Conclusion

- Motivation
- Method
- Results
- Conclusion

Work Plan

- Goal:
 - Control that the merging scheme developed for ¹⁸Ne & ⁶He also works for ⁸B & ⁸Li
- Plan:
 - Reproduce the results for ¹⁸Ne & ⁶He
- Use the already existing RF program → A Charlesol Find Report
 Simulate with a 2D longitudine.
 - Repeat for ⁸B & ⁸Li
 - Adapt the RF program for ⁸B & ⁸Li
 - Perform the 2D Simulations

Software

- The RF simulations are done with "BBPhase"
 - A 2D longitudinal phase space program

Now adapted to allow bunch merging simulations

SVN: http://svnweb.cern.ch/world/wsvn/bbphase

Ι

┝

Ш

Injection

- The new bunch is injected off momentum (separated by a septum magnet)
- For now: Injected bunch is elliptical with homogeneous distribution (to do: implement gaussian distr.)

- Capture efficiency optimized for injection at
 - → δ = 4.92 ‰ $\Delta φ = 0.005°$
- After ¼ synchrotron turn it is "captured" by one RF system
 - Achieved Capture Efficiencies (could be improved with gaussian distr.)
 - 88.8% for ⁶He & 87.8% for ¹⁸Ne
 - ➡ 88.2% for ⁸Li & 89.0 % for ⁸B

Ι

Ш

Merging & Collimation

- Then a 2nd RF system is turned on to merge the new bunch into the old bunch
 Cavity 1
 Cavity 1
 Cavity 2
- The RF program is followed
 - First Asymmetric Merging: i.e. the two buckets have different size
 - Then Symmetric Merging: i.e. same size of the buckets

- Collimation at $\Delta p/p = 2.5\%$
 - scrapes away ions not captured
 - Imits the bunch size to protect the septum magnet

Ι

⊢

Ш

Source Rate & Injection Intensity

- Assume optimistic Ion Production Rate for both Baselines
 - Gives the following number ions per bunch at injection into the Decay Ring (according to a Mathematica programs that calculates the whole Beta Beam chain)

	¹⁸ Ne	۴He	⁸ B	⁸ Li
Assumed Source Rate [10 ¹³ ions/s]	2.1	2.0	9.0	9.0
Production Method	NaF loop	ISOL	Production Ring	Production Ring
DR Injection [10 ¹¹ ions/ bunch]	2.35	4.87	8.43	21.50

- Motivation
- Method
- Results
- Conclusion

- Motivation
- Method
- Results
- Conclusion

Accumulation

 Due to Collimation and Radioactive decay the number of ions per bunch saturates in the DR (20 of these bunches gives N_{tot})

Danie

Heinrich

Thursday, October 21, 2010

Ŋ

⊢

П

Ш

ľ

- After "saturation" the bunches are ~ 2m long (all ions)
- 20 bunches from SPS to DR \rightarrow SF = 20 \cdot 2m / 6911m = 0.58%
 - I.e. between 0.1% and 1%
 - Good! Since for nominal:

C

F

ິ

Ш

Ľ

- So the simulation gave us accumulated number ions per bunch
- 20 bunches in DR \rightarrow Gives the annual neutrino rate
- Assuming nominal v flux for ⁸B & ⁸Li is 5 times that for ¹⁸Ne & ⁶He → Gives the "v-flux-ratio"

	¹⁸ Ne	6He	⁸ B	⁸ Li
Assumed Source Rate [10 ¹³ ions/s]	2.1	2.0	9.0	9.0
DR Injection [10 ¹¹ ions/ bunch]	2.35	4.87	8.43	21.50

- So the simulation gave us accumulated number ions per bunch
- 20 bunches in DR \rightarrow Gives the annual neutrino rate
- Assuming nominal v flux for ⁸B & ⁸Li is 5 times that for ¹⁸Ne & ⁶He → Gives the "v-flux-ratio"

	¹⁸ Ne	۴He	⁸ B	⁸ Li
Assumed Source Rate [10 ¹³ ions/s]	2.1	2.0	9.0	9.0
DR Injection [10 ¹¹ ions/ bunch]	2.35	4.87	8.43	21.50
DR Accum. [10 ¹² ions/ bunch]	3.I	4.0	6.8	17.5

- So the simulation gave us accumulated number ions per bunch
- 20 bunches in DR \rightarrow Gives the annual neutrino rate
- Assuming nominal v flux for ⁸B & ⁸Li is 5 times that for ¹⁸Ne & ⁶He → Gives the "v-flux-ratio"

	¹⁸ Ne	۴He	⁸ B	⁸ Li
Assumed Source Rate [10 ¹³ ions/s]	2.1	2.0	9.0	9.0
DR Injection [10 ¹¹ ions/ bunch]	2.35	4.87	8.43	21.50
DR Accum. [10 ¹² ions/ bunch]	3.1	4.0	6.8	17.5
v-rate [10 ¹⁸ v/year]	0.92	2.40	4.34	10.20

R N N N N

- So the simulation gave us accumulated number ions per bunch
- 20 bunches in DR \rightarrow Gives the annual neutrino rate
- Assuming nominal v flux for ⁸B & ⁸Li is 5 times that for ¹⁸Ne & ⁶He → Gives the "v-flux-ratio"

	¹⁸ Ne	6He	⁸ B	⁸ Li
Assumed Source Rate [10 ¹³ ions/s]	2 . I	2.0	9.0	9.0
DR Injection [10 ¹¹ ions/ bunch]	2.35	4.87	8.43	21.50
DR Accum. [10 ¹² ions/ bunch]	3.1	4.0	6.8	17.5
v-rate [10 ¹⁸ v/year]	0.92	2.40	4.34	10.20
v-flux-ratio	0.84	0.83	0.79	0.70

- Motivation
- Method
- Results
- Conclusion

- Motivation
- Method
- Results
- Conclusion

Conclusion

- It was possible to
 - adapt the RF bunch merging scheme to the 2D program BBPhase
 - recreate the capture efficiencies for ¹⁸Ne & ⁶He achieved in "FP6"
- These results were extended to ⁸B & ⁸Li, however using very preliminary values for
 - ion production rate
 - emittance of injected bunches
- Bunch lengths of 2 m gives a duty factor (assuming 20 bunches) well below the upper limit of 1%

Note under preparation: <u>http://chansen.web.cern.ch/chansen/PUBLICATIONS/merging.pdf</u> SVN: <u>http://svnweb.cern.ch/world/wsvn/bbphase</u>

Thursday, October 21, 2010

Ζ ິ C Ζ ۲ ۱

Backup Slides

Parameters

So far all studies based on EURISOL FP6 parameters

Parameters	Description	DR 18Ne	DR ⁶ He
Z	Charge Number	10	2
A	Mass Number	18	6
h	Harmonic Number	924	924
C [m]	Circumference	6911.6	6911.6
p [m]	Magnetic Radius	155.6	155.6
Yer.	Gamma at Transition	27.00	27.00
VRF [MV]	Voltage	1.196c+01	2.000e+01
dB/dt [T/s]	Magnetic Ramp	0.00	0.00
Y	Relativistic Gamma	100.0	100.0
Smax	Maximum Momentum Spread	2.50e-03	2.50e-03
Erest [MeV]	Rest Energy	16767.10	5605.54
М	Number Bunches per Batch	20	20
L_b [m]	Full Bunch Length	1.970	1.970
Nh	Number Ions per Injected Bunch	2.35e+11	4.87c+11
NB	Average Number Ions per Bunch	3.10e+12	4.00c+12
mr	Merges Ratio	20	15
1/2 [S]	Half Life at Rest	1.67	0.81
T _c [s]	Revolution Time	3.60	6.00
0,	Horizontal Tune	22.23	22.23
Õ.	Vertical Tune	12.16	12.16
$\langle \beta \rangle_r [m]$	Average Horizontal Betatron Function	148.25	148.25
$\langle B \rangle_{v}$ [m]	Average Vertical Betatron Function	173.64	173.64
$\langle D \rangle_{r}$ [m]	Average Dispersion	-0.60	-0.60
Ex	Horizontal Chromaticity	0.0	0.0
E.	Vertical Chromaticity	0.0	0.0
$\varepsilon_{N}(1\sigma) [\pi m \cdot rad]$	Normalized Horizontal Emittance	1.48c-05	1.48e-05
$\varepsilon_N(1\sigma) [\pi m \cdot rad]$	Normalized Vertical Emittance	7.90c-06	7.90c-06
Er (full) [eVs]	Full Longitudinal Emittance	42.89	14.36
b, [cm]	Horizontal Beam Pipe Size	16.0	16.0
by [cm]	Vertical Beam Pipe Size	16.0	16.0
$\rho_{res}[\Omega m]$	Resistivity	1.0e-07	1.0e-07

TABLE 2.	Input parameters	from previous Bet	a Beam Decay	Ring design report [10].
----------	------------------	-------------------	--------------	--------------------------

TABLE 3. Assumed in	pedance input	parameters.
---------------------	---------------	-------------

Parameters	Description	DR 18Ne	DR 6He
0	Longitudinal Quality Factor	1.00	1.00
ω _{r.} [GHz]	Longitudinal Angular Resonance Frequency	6.28	6.28
$Z_{\parallel}/n \left[\Omega\right] = \lim_{\omega \to 0} \frac{ 2 }{\omega}$	$\frac{Z(\omega)}{\omega_{m_{1}}}$	10.00	10.00
$R_{s,\parallel}$ [MΩ] = $\frac{ Z/n Q\omega_r}{\omega_r}$	Longitudinal Shunt Impedance	0.231	0.231
Q	Transverse Quality Factor	1.00	1.00
ω_r [GHz]	Transverse Angular Resonance Frequency	6.28	6.28
$R_{s,\perp}[M\Omega/m]$	Transverse Shunt Impedance	20.00	20.00

Data Base:

http://j2eeps.cern.ch/beta-beam-parameters/

TABLE 4. Calculated values.

		DR 18Ne	DR ⁶ He
$r_0 [\mathrm{m}] = r_p Z^2 / A$	Ion Radius	8.53e-18	1.02e-18
$E_{tot} [\text{GeV}] = \gamma \cdot E_{rest}$	Total Energy	1676.71	560.55
$\beta = \sqrt{1 - 1/\gamma^2}$	Relativistic Beta	1.00	1.00
$\eta = (1/\gamma_{tr})^2 - (1/\gamma)^2$	Phase Slip Factor	1.27e-03	1.27e-03
$T_{rev} \left[\mu s \right] = C / (\beta c)$	Revolution Time	23.0558	23.0558
$R[m] = C/2\pi$	Machine Radius	1100.02	1100.02
ω_{rev} [MHz] = $2\pi/T_{rev}$	Angular Revolution Frequency	0.27	0.27
$\sigma_{\delta} = \delta_{max}/2$	1 Sigma Momentum Spread	1.25e-03	1.25e-03
$\tau_b [ns] = L_b / (\beta c)$	Full Bunch Length	6.57	6.57
$\hat{I}[A] = ZeN_B/\tau_b$	Peak Current	755.80	195.04
$I_b [A] = ZeN_B/T_{rev}$	Beam Current	0.22	0.06
$\varepsilon_l^{2\sigma}$ [eVs] = $\frac{\pi}{2}\beta^2 E_{tot}\tau_b \delta_{max}$	2 Sigma Longitudinal Emittance	43.27	14.46
$Q_s = \sqrt{\frac{hZeV[\eta\cos\phi_r]}{2\pi\beta^2 E_{out}}}$	Synchrotron Tune	0.00	0.00
$\omega_s [kHz] = Q_s \cdot \omega_{rev}$	Synchrotron Angular Frequency	1.00	1.00
$\omega_x [MHz] = Q_x \cdot \omega_{rev}$	Horizontal Betatron Angular Frequency	6.06	6.06
$\omega_{\rm v} [{\rm MHz}] = Q_{\rm v} \cdot \omega_{\rm rev}$	Vertical Betatron Angular Frequency	6.06	6.06
$\omega_c [GHz] = \beta c / b_{min(x,y)}$	Cut-Off Angular Frequency	1.87	1.87
$\Delta Q_{E} = \xi_x \delta_{max} Q_x$	Horizontal Tune Shift due to Chromaticity	0.0	0.0
$\Delta Q_{\xi} = \xi_{y} \delta_{max} Q_{y}$	Vertical Tune Shift due to Chromaticity	0.0	0.0
ω_{ξ_x} [MHz] = $\xi_x Q_x \omega_{rev} / \eta$	Horizontal Chromatic Angular Frequency	2.38e+02	2.38e+02
ω_{ξ_y} [MHz] = $\xi_y Q_y \omega_{rev} / \eta$	Vertical Chromatic Angular Frequency	1.30e+02	1.30e+02

Thursday, October 21, 2010

 \mathbf{V}

 \square

4

Ш