An overview on μ Physics

Giancarlo Piredda INFN Roma- Sapienza

Nufact2010 October 20-25 Tata Institute for Fundamental Research, Mumbai

Outline

The role of $\boldsymbol{\mu}$ in search for New Physics

- Search for
 - Process forbidden in Standard Model (e.g. cLFV)
 - Process well predicted in SM (e.g. $(g-2)_{\mu}$)
- The experimental situation
 - (g-2)_µ
 - The MEG project
 - The $\boldsymbol{\mu}$ to e conversion experiments
- Conclusions
- (Not intended nor possible to be full comprehensive)
- Credits to:
 - G. Cavoto, Y.Kuno, S. Mihara, D. Nicolo', N. Saito, Fermilabg-2, F. Renga, P.
 Paradisi and the others that I forgot

cLFV vs g-2, and EDM

- Contribution to EDM, MDM of leptons from diagonal elements of the slepton mass matrix
- LFV processes induced by off-diagonal terms (depend on how SUSY breaking is generated and what kinds of LFV interactions exist at the GUT scale) γ

Particle Dipole Moments

 Magnetic and Electric Dipole Moments are related to Spin of the Particle: axial vector

$$\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s} \quad \vec{d} = \eta\left(\frac{e}{2mc}\right)\vec{s}$$
$$a = \frac{g-2}{2} \quad H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

MDM (Magnetic Dipole Moment) Contains contributions from ALL PHYSICS! - EW, QCD, and New Physics \Rightarrow precision test of the SM \Rightarrow the most precise determination of α_{EM} from electron g-2 (0.37 ppb)

EDM (Electric Dipole Moment)

- If EDM nonzero, T is violated
- ⇒ CP violation in the lepton sector (under CPT)
- \Rightarrow leptogenesis?
- ⇒ Baryon Asymmetry in the Universe

Muon magnetic moment

- Magnetic moment and spin can be related as
 - $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s}$ $\vec{\mu}$: magnetic moment \vec{s} : spin g: gyromagnetic ratio
- Dirac equation predicts g=2

$$\mu = (1+a)\left(\frac{e\hbar}{2m}\right)$$
 $a = \frac{g-2}{2}$ a=1.2e-3 for *e*, μ , ... a=1.8 for proton

 Radiative corrections (including NEW PHYSICS) would make g≠2

$$\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \sim 40,000 \qquad \left(\frac{m_{\tau}}{m_{\mu}}\right)^{2} \sim 290$$

🛋 a=0

SM Contributions to a $\neq 0$

 Any particle which couples to muon/photon would contribute : QED >> Hadron > Weak

Muon Spin precession

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

 η

 $\vec{\omega}_a$

 $a_{\mu} - \frac{1}{\gamma^2 - 1}$

$$(e^{2} - 1) c \qquad (2) (c)]$$

: $d_{\mu} = \frac{\eta}{2} \left(\frac{e}{2m}\right)$ Electric Dipole Moment
 $d_{e} = (6.9 \pm 7.4) \times 10^{-28} e \cdot cm$

Expected to be

$$d_{\mu} < (1.5 \pm 1.4) \times 10^{-25} e \cdot cm$$

Measured to be

$$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19} e \cdot cm$$

G.W.Benett et al. Phys.Rev.D80:052008,2009

m

$$\gamma_{\text{magic}} = 29.3$$

 $p_{\text{magic}} = 3.09 \text{ GeV/}c$

$$-\frac{e}{m}a_{\mu}\vec{B}$$

BNL E821 proposal to move to Fermilab

Experimental Technique: fill ring, count until all muons are gone; do it again

(thanks to Q. Peng)

BNL, FNAL, and J-PARC

Done Proposals with diff techniques se

See K.Ishida WG3

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c (magic)		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		None
# of detected μ + decays	5.0E9	1.8E11	1.5E12
# of detected μ - decays	3.6E9 -		-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

Lepton Flavor Violation of Charged Leptons

Contrary to the well established neutrino mixing the charged lepton one not observed yet

SO(10) SUSY GUT w/ see-saw (Calibbi, Faccia, Masiero, Vempati '07)

Giancarlo Piredda

The MEG Experiment at PSI

See also H. Nishiguchi WG4 oct 21

*The more intense DC μ beam in the world (up to 10^8 $\mu/s)$ *The largest (800 I) Liquid Xenon Calorimeter for γ detection * Dedicated e+ spectrometer with graded B field and high time resolution

History

- 1947 Hinks & Pontecorvo:
 - First limit;
- ~1960 the lack of a 10⁻⁴
 signal ->existence of at least
 2 neutrinos!
- 1977 -

Van der Schaaf *et al.* (PSI) Depommier *et al.* (TRIUMF):

- First experiments with muon beams.
- 1999 MEGA (LANL):
 - Present best limit;
 - BR < 1.2×10^{-11} @ 90% C.L.

Experimental Signature

Required Performances

 $BR(\mu \rightarrow e_{\gamma}) \approx 10^{-13}$ reachable

BRacc.b. \approx 2 10⁻¹⁴ and BRphys.b. \approx 0.1 BRacc.b. with the following resolutions

Exp./Lab	Year	$\Delta E_e / E_e$ (%)	Δ E _γ /E _γ (%)	Δ t _{eγ} (ns)	Δθ _{eγ} (mrad)	Stop rate (s ⁻¹)	Duty cyc.(%)	BR (90% CL)
SIN	1977	8.7	9.3	1.4	-	5 x 10 ⁵	100	3.6 x 10 ⁻⁹
TRIUMF	1977	10	8.7	6.7	-	2 x 10 ⁵	100	1 x 10 ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4 x 10 ⁵	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	1986	8	8	1.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	1999	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	1.2 x 10 ⁻¹¹
MEG	2011	0.8	4	0.15	19	2.5 x 10 ⁷	100	1 x 10 ⁻¹³

FW/HM

Need of a DC muon beam

The MEG Experiment

1m

The MEG Experiment

The Positron Spectrometer

- 16 low-mass *Drift Chambers* in a Helium atmosphere with a *graded magnetic field* :
 - very low total material budget (< 0.005 X₀);
 - fast expulsion of tracks from the spectrometer even at large polar angles.

Design resolutions Momentum: 200 keV/c Direction: 4.5 mrad

The Timing Counter

- 2 detectors (upstream & downstream) for precise positron timing and trigger;
- 15 plastic scintillating bars per detector read by PMTs:
 - timing
 - phi position
 - trigger
- 1 layer of scintillating fibers per detector, read by APDs:
 - z position
 - trigger

Design ResolutionTime: 45 ps

The LXe Calorimeter

- The largest LXe calorimeter in the world:
 - 800 liters;
- Fast response:
 - t = 4ns / 22ns / 45ns;
- Good light yield:
 - ~ 75% of Nal(Tl);
- Light collected by 846 PMTs.

Hamamatsu R9288

Design RESOLUTIONS Energy: 800 keV Conversion Point: 2 - 4 mm Time: 65 ps

Calibrations

Resolutions (I)

CONTINUOUS IMPROVEMENTS

	2008	2009 (prelim.)
Gamma Energy	2% (core)	2% (core)
Gamma Timing	80 ps	> 67 ps
Gamma Position	5 / 6 mm	5 / 6 mm
e+ Momentum	1.6 %	0.74% (core)
e+ Timing	< 125 ps	< 95 ps
e+ Angle	10 / 18 mrad	7 / 11 mrad
m Decay Point	3.2 / 4.5 mm	2.3 / 2.8 mm
Gamma-e+ Time	148 ps	142 ps (core)
Gamma-e+ Angle	14 / 21 mrad	13 / 15 mrad

Resolutions (II)

Analysis of 2009 Data

- Data Set-> 46 days of data taking
- Blind analysis :
 - development and optimizations based on sideband data;
- Extended Maximum Likelihood fit in 5 observables:
 - E_e, E_g, T_{eg}, y_{eg}, f_{eg}
- Normalization by counting the number of $\mu \rightarrow e \nu \nu$ decays.
 - Systematics cancel

6.5 x 10^{13} stopped μ .

 $N_{
m sig} imes (1.01 \pm 0.08) imes 10^{-12}.$

Likelihood Analysis (I)

- Event-by-event PDFs:
 - Position dependence in the LXe;
 - two track quality categories;
- PDFs Modeled from sidebands and calibrations;
- Careful check for possible correlations;
- 3 different analysis frameworks for cross-checks.

EXPECTED UL (from toy MC experiments) ~ 6.1 x 10⁻¹²

Control Samples

- The strategy is applied to the *Teγ sidebands* to check the consistency of the data description;
- Only accidental background is present:
 - both Signal and Rad. Decays should give zero yield;

Results are consistent with $N_s = N_{RD} = 0$ and with Toy MC expectations (fictitious ULs of $4 - 6 \times 10^{-12}$ are obtained)

Right sideband

Signal Region

Contours are 2D signal PDF for 1s (39.3 %), 1.64s (74.2%) and 2s (86.5%) regions. The numbered events are ranked according to the S/B likelihood ratio.

Systematics

- Parameters are fluctuated in the toy MC generation to include the systematics in the Feldman-Cousins procedure;.
- Large uncertainty on the angular PDFs due to reconstruction biases

PARAMETER	UNCERTAINTY
Normalization	88
Eγ scale	0.4%
$E\gamma$ resolution	7%
Ee scale	50 keV
Ee resolution	15%
Teγ mean	15 ps
Tey resolution	10%
Angle mean	7.5 mrad
Angle resolution	10%
Ee- ϕ correlation	50%

PRELIMINARY

Upper Limit

- From the U.L. on the number of signal events:
 - N_s < 14.5 @ 90% C.L.
- ... and the normalization factor:
 - BR($\mu \rightarrow e \gamma$) = N_S x (1.01 ± 0.08) x 10⁻¹²
- ... we get the following U.L. on the Branching Ratio (syst. included):
 PRELIMINA

BR($\mu \rightarrow e \gamma$) < 1.5 × 10⁻¹¹ @ 90% C.L

- Looks different from estimated sensitivity
- No lower limit:
 - BR = 0 is within the 90% C.L. interval.

Next Steps

- MEG is taking data now (since August)
 - 2010 yield is x 3 2009 sample (stay tuned!)
 - Will help in understanding the preliminary results
- Meanwhile
 - Additional calibration tools
 - Monochromatic e+ beam for the spectrometer
 - 9 MeV γ -line induced by neutron generator in the LXe
- The MEG data taking will continue in 2011 and 2012
 - To reach an UL in the 10⁻¹³ range or
 - To make a great discovery!

If they are roses...they will blossom

but if they are not and in any case there is an alternative...

What is μ -e Conversion?

Y.Kuno WG4 Oct 21

Neutrino-less muon nuclear capture $(=\mu$ -e conversion)

$$\mu^{-} + (A,Z) \rightarrow e^{-} + (A,Z)$$

lepton flavors changes by one unit

nuclear muon capture

$$\mu^{-} + (A,Z) \diamondsuit \nu_{\mu} + (A,Z-1)$$

 $B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow vN')}$

$\mu \rightarrow e\gamma$ and μ -e conversion

- If $\mu \rightarrow e\gamma$ exits, μ -e conv must be
- Even if $\mu \rightarrow e\gamma$ is not observed, μ -e conv may be
 - Loop vs Tree
 - Searches at LHC

$\mu \rightarrow e\gamma$ and μ -e conversion

• Important to measure both $\mu \rightarrow e\gamma$ and μ -e with similar sensitivity

µ-e conversion signal

 $\begin{array}{l} \bullet E_{\mu e} ~ \sim m_{\mu} \bullet B_{\mu} \\ - B_{\mu} : \mbox{ binding energy of the } \\ 1s \mbox{ muonic atom } \end{array}$

 Improvement of a muon beam is possible, both in purity (no pions) and in intensity (*thanks to muon collider R&D*). A higher beam intensity can be taken because of no accidentals.

•Potential to discriminate different models through studying the Z dependence

History of $\mu\text{-}e$ conversion search

Year	Muon source	Target	Upper bound
1952	Cosmic rays	Cu, Sn	4×10 ⁻²
1955	Nevis cycl.	Cu	5×10 ⁻⁴
1961	Berkeley synchroc.	Cu	4×10 ⁻⁶
1961-62	CERN synchroc.	Cu	2.2×10 ⁻⁷
1972	Virginia SREL synchroc.	Cu	1.6×10 ⁻⁸
1977	SIN	S	7×10 ⁻¹¹
1984	TRIUMF	Pb	4.9×10 ⁻¹⁰
		Ti	4.6×10 ⁻¹²
1992	PSI	Pb	4.6×10 ⁻¹¹
1993-97	(only in conference proc.)	Ті	6.1×10 ⁻¹³
2006		Au	7×10 ⁻¹³

Mu2e (Fermilab) vs COMET(J-Parc)

	Mu2e	COMET
Proton Beam	8GeV, 20kW bunch-bunch spacing 1.69 µsec rebunching Extinction: 10 ⁻⁹	8GeV, 50kW bunch-bunch spacing 1.18-1.76 µsec empty buckets Extinction: 10 ⁻⁹
Mu Transport	S-shape Solenoid	U-shape solenoid
Detector	Straight Solenoid with gradient field Tracker and Calorimeter – 500 kHz DAQ	Pion Capture Section U-shape Sol activity Capture Pins with a adjent field Production Tracker and Calorimeter- 1 kHz Pions Pions Pions Pione Pions Pione
Sensitivity Approval status	SES: 2.5×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷ CD-0 (of 4)	SES: 2.6×10 ⁻¹⁷ 90% CL UL: 6×10 ⁻¹⁷ Stage 1 (of 2)

Conclusions

- Muon played an important role to establish the SM
- We believe that could be same in going beyond the SM
- Thanks to the intense muon beam described in this conference
- very well designed and conducted. Many thanks to the Organizers!

More slides

The $\pi E5$ Beam @ PSI

- The most intense DC muon beam in the world:
 - up to $10^8 \,\mu/s$;
 - only 3 x 10⁷ μ/s for the MEG running (reduced accidental rate);

Proton beam current	: ~ 2.2 mA
Muon production	: from π decaying in target proton surface
Muon Momentum	: 28 MeV/c ± 38

Data Sets

• 2008:

- ... days of data taking
- $-\sim$... stopped muons;
- Sensitivity ~ 1.3×10^{-11} ;
- BR(m → e g) < 2.8 x 10^{-11} Nucl. Phys. B **834** (2010) 1

• 2009:

- Significant hardware upgrades (DCH, electronics);
- 46 days of data taking;
- ~ 6.5 x 10¹³ stopped muons.

Efficiencies

EFFICIENCIES

CONTRIBUTION	2008	2009
Gamma	63%	58%
Positron	14%	40%
Trigger	66%	84%
DAQ	62%	81%

DAQ & Trigger

- High accidental background rejection (~ 10⁷) with ~100% signal efficiency required at the trigger level:
 - online determination of g energy, e g timing and e g collinearity (fully digital implementation);
 - ~ 5 10 Hz trigger rate during normal data acquisition;
- Very fast waveform digitalization (0.5 4.5 GHz) for offline analysis:
 - custom chip (Domino Ring Sampling, DRS) designed @
 PSI;
 - 10 channels x 1024 bins per chip;
 - 40 ps time accuracy at 2.5 GHz.

Proposal for g-2@Fermilab

- Submitted to Fermilab PAC
 - Contact persons: Lee Roberts (Boston U)

Dave Hertzog (UIUC)

- Cost Estimate: ~\$30 M (w/ contingency)
- The PAC

endorsed the experiment

Subject to DOE review in August

