NuFact10 Mumbai, India

Oscillation Physics WG Summary

Thomas Schwetz

(Sandhya Choubey, Patricia Vahle)

WG1 statistics

- 8 WG1 sessions + 2 joint WG1/WG2 sessions
- 28 + 8 talks (29 speakers)
 - \rightarrow 15 theory/phenomenology
 - \rightarrow 13 + 8 experimental
- + 7 accepted abstracts for posters

WG1 statistics

- 8 WG1 sessions + 2 joint WG1/WG2 sessions
- 28 + 8 talks (29 speakers)
 - \rightarrow 15 theory/phenomenology
 - \rightarrow 13 + 8 experimental
- + 7 accepted abstracts for posters

I will give a very biased summary and appologize for those talks which I will mention only briefly!

Session topics

- Status reports (OPERA, T2K, NOvA, reactors, LBNE)
- MiniBooNE/LSND (explanations/tests)
- MINOS (neutrino/antineutrino "anomaly)
- LBL phenomenology (2540 km / tau decays)
- neutrino mass models
- NSI and exotics
- Daedalus / LENA / thousand suns
- ND/LAr/WC R&D (joint WG1/2)
- near-far extrapolation (joint WG1/2)

Status reports from ... • OPERA T. Ariga

hope for 4.5x10¹⁹ pot end of 2010 (out of 22.5x10¹⁹ pot total) analysis of 1.85x10¹⁹ pot completed: 1 tau candidate (0.5 expected) / full 2008/09 data set analysis: early next year

• T2K A. Blondel

- -- T2K experiment is now fully operational and data taking
- -- superb detector performance
- -- proton intensity increasing steadily (reach 750 kW in 2014)
- -- First data taking period in 2010 accumulated 3.23 1019 30 GeV p.o.t.
- -- Preparing first physics result for end 2010

• NOvA B. Rebel

NDOS running now / FD constr. begins July 2011 / acceler. shutdown March 2010 / 700 kW beam turns on Feb. 2013 (FD 2/3 built) / FD complete fall 2013

... and reactor experiments

- DoubleChooz filling started 13th Oct, first neutrino early 2011 M. Dracos
 2011-2012, phase I : FD only sin²(2θ₁₃) < 0.06 @ 90% C.L.
 2012-2014, phase II : both detectors sin²(2θ₁₃) < 0.03 @ 90% C.L.
- RENO PMT inst. completed, prep. of liquid handling/DAQ systems RENO is suitable for measuring sin2(2θ13) > 0.02 J.S.Jang
 - **DayaBay** civil constr. near hall: finished, far hall: excavation, two detectors assambled: dry run, fall 2012 all near/far hall physics ready

> Goal: sensitivity to $\sin^2 2\theta_{13} < 0.01$; H. Lu

SK atmospheric neutrinos

• "full" 3-flavour analysis H. Kaji

SK atmospheric neutrinos

• "full" 3-flavour analysis H. Kaji

LBNE program

- LBNE status Choudhary
- ND plans Mishra
- LAr R&D Rebel
- large WC detector WG1/2 join Whitehead

Det. @ DUSEL: 200 kt WC or 34 kt LAr or a combination thereof

Det constr. 2014/15, physics by the end of the decade

WG1 summary, NuFact10, Mubai

LBNE program

T. Schwetz

WG1 summary, NuFact10, Mubai

Joint WG1/2 session

on near \rightarrow far extrapolation

- on-axis (MINOS) L. Whitehead
- off-axis (NOvA) Z. Djurcic
- off-axis (T2K) K. McFarland
- reactor experiments L. Whitehead

GeV neutrinos in LENA

use huge scintillation detetector for LBL experiment: track reconstruction by light front propagation

- Two possible baselines for LENA, 130 km (CERN-Frejus) and 2300 km (CERN-Pyhäsalmi)
- Single particle tracks can be reconstructed precisely at low energies (0.2 GeV-1 GeV)
- At high energies (1 GeV-5 GeV) up to 3 tracks in one event can be reconstructed
- Good lepton energy resolution at low energies (0.5%)
- Good neutrino energy resolution at high energies (1% to 5%)
- Good lepton flavour identification at low and high energies
- Background from NC events, needs to be analyzed in future Monte-Carlo studies
 R. Möllenberg

MiniBooNE results Z. Djurcic

WG1 summary, NuFact10, Mubai

MiniBooNE results Z. Djurcic

- Need more statistics
 - MiniBooNE is running to double antineutrino data set for a total of ~10x10²⁰ POT by Spring 2011.
 - If signal continues at current rate, two neutrino best fit will be ${\sim}3\sigma$ (with ${>}8x10^{20}$ POT).
 - Requested ~15x10²⁰ POT to achieve ~4 σ evidence.

How to explain LSND/MB?

- Oscillations involving one [(3+1)] or more [(3+n)] sterile neutrinos does not provide a satisfactory fit to global data
- Severe constraints from null-result experiments, in particular e and µ disappearance experiments

More exotic proposals

- S-neutrinos and CPT violation Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos
 Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS, 07

More exotic proposals

- 3-neutri KamLAND+atmospheric antineutrino data Barenboim, Benesov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. KamLAND spectral data nce Barenboim, Mavromatos 04
- Lorentz violetterendence, MiniBooNE?
 Kostelecky, energy dependence, MiniBooNE?
- Kostelecky, energy dependence, Grossman, 06; Katori, Kostelecky, Tayloe, 06
 Mass Varyin CDHS+atmospheric data? Kaplan, Nelson, Wei CDHS+atmospheric, Marfatia, Whisnant 05
- Paes, Pakvasa, We MiniB+KamL+atmospheric? Extra dimensions shortcuts of sterilo pourts
- 1 decaying steril (MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrir KamL+atmospheric? ge boson Nelson, Walsh 07
- sterile ν with engine $\bar{\nu}$? hass or mixing TS, 07

(3+1) + NSI TS

- a 4th neutrino with $\Delta m^2_{41} \sim 1 \; {\rm eV^2}$
- a new type of CC-like interaction

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{\alpha,\beta} \varepsilon_{\alpha\beta}^{ff'} (\bar{f}P_{L,R}\gamma^{\mu}f') (\bar{l}_{\alpha}P_L\gamma_{\mu}\nu_{\beta}) + h.c.$$

f, f' fermions depending on production or detection process

- need ε 's ~ 0.01, in agreement with phenomenological bounds
- Can decouple LSND/KARMEN from rest of data (the only experiments using muon decay as neutrino source)
- CP violation due to oscillation-NSI interference
- Tension between appearance and disappearance resolved
- Cannot explain low-energy MiniBooNE excess T. Schwetz WG1 summary, NuFact10, Mubai

How to test LSND/MiniBooNE?

- MicroBooNE?, BooNE?
- LAr detectors at CERN PS beam?
- NOvA or LBNE near detectors (S. Mishra)

Can we use any of the many near/R&D/cross section detectors (maybe with some minor adjustment) to search for high Dm² oscillations? We will need to sort out these anomalies once we want to do oscillation experiments at sub-percent precision

Pions, Protons, Gadolinium P.Huber

- Stopted pion source
- 300 kW proton beam
- Gd doped SK
- Beamstop 20 m from SK surface

New physics with MeV v sources

...brighter than a thousand suns

R.S. Raghavan

in-line production of radio active source \rightarrow search for sterile neutrino oscillations inside the LENS detector Example already exists: SK calibrator On-line source for LENS modular detector

Sterile Nu's @ NuFact J. Tang

arb. mass

eV mass

NDFD@NF v.s MINOS

summary, NuFact10, Mubai

MINOS results S. Childress

Data Sets for Current CC Results

Total NuMI protons to 00:00 Monday 31 May 2010

MINOS results S. Childress

Tension between neutrinos and anti-neutrinos?

How to improve on anti-nu's?

 MINOS more powerful to measure Dm² for anti-neutrinos than NOvA (nu-contamination in anti-nu beam → magnetic field)

How to improve on anti-nu's?

- MINOS more powerful to measure Dm² for anti-neutrinos than NOvA (nu-contamination in anti-nu beam → magnetic field)
- Run MINOS longer \rightarrow delay NOvA?
- MINERvA wants neutrinos → conflict with longer anti-nu running for MINOS?
- Can we use CNGS for this? (probably no)
- Should we base our strategy on 2σ effects?

discussion session on MINOS anti-nu results

WG1 summary, NuFact10, Mubai

SK atmospheric neutrinos?

- using different zenith angle distr. of singleand multi-ring events for neutrinos and antineutrinos →
- statistical separation
- no hint for CPT violation

Can we explain nu/anti-nu diffs?

• non-standard neutrino interactions? S. Parke

T. Schwetz

WG1 summary, NuFact10, Mubai

Can we explain nu/anti-nu diffs?

O. Yasuda

- NSI in the e- τ channel, where limits are O(1) when correlated with the $\tau\tau$ element
- sterile neutrinos at the atmosph Dm² scale

W. Rodejohann

• gauged $L_{\mu}-L_{\tau}$ Z' long-range force + Z-Z' mixing \rightarrow effective potential between $v_{\mu}-v_{\tau}$

Can we explain nu/anti-nu diffs?

all these ideas do not really improve the neutrino/antineutrino problem and/or are excluded by other constraints

O. Yasuda, W. Rodejohann

Summary

It's very hard to explain MINOS data^a

^aAlso see Osamu's talk why all solutions presented so far probably don't work...

2540 km (bi)magic baseline

S. Raut (superbeam)

S. Goswami (LENF)

the magic baseline ~7500 km

$$P_{\mu e} = C_0 \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} + \alpha^2 C_2 \frac{\sin^2(\hat{A}\Delta)}{A^2} + \alpha C_1 \cos(\Delta + \delta_{cp}) \frac{\sin((1-\hat{A})\Delta)}{(1-\hat{A})} \frac{\sin((1-\hat{A})\Delta)}{\hat{A}}$$

Barger et al. 01; Huber, Winter 03; Smirnov 06

 $A\Delta = \pi$ independent of osc params and energy!

2540 km (bi)magic baseline

$$P_{\mu e} = C_0 \frac{\sin^2((1-\hat{A})\Delta)}{(1-A)^2} + \alpha^2 C_2 \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} + \alpha C_1 \cos(\Delta + \delta_{cp}) \frac{\sin((1-A)\Delta)}{(1-\hat{A})} \frac{\sin(\hat{A}\Delta)}{\hat{A}}$$

• IH no CP $\implies \sin[(1 - \hat{A})\Delta] = 0$ $\implies (1 + |\hat{A}|) \cdot |\Delta| = n\pi$ For NH $\sin[(1 - \hat{A})\Delta] = 1$ $\implies (1 - |\hat{A}|) \cdot |\Delta| = (m - 1/2)\pi$

- **)** For n = 1 and m = 1
 - $L \approx 2540 \text{ km } E_{\nu} \equiv E_{IH} \approx 3.3$
 - GeV, Raut, Singh, UmaShankar, 2009

2540 km (bi)magic baseline

$$P_{\mu e} = C_0 \frac{\sin^2((1-\hat{A})\Delta)}{(1-A)^2} + \alpha^2 C_2 \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} + \alpha C_1 \cos(\Delta + \delta_{cp}) \frac{\sin((1-A)\Delta)}{(1-\hat{A})} \frac{\sin((A\Delta)}{\hat{A}}$$

• IH no CP
$$\implies \sin[(1 - \hat{A})\Delta] = 0$$

 $\implies (1 + |\hat{A}|) \cdot |\Delta| = n\pi$
For NH $\sin[(1 - \hat{A})\Delta] = 1$
 $\implies (1 - |\hat{A}|) \cdot |\Delta| = (m - 1/2)\pi$
• For $n = 1$ and $m = 1$

 $L \approx 2540 \text{ km } E_{\nu} \equiv E_{IH} \approx 3.3$

GeV, Raut, Singh, UmaShankar, 2009

NH No CP ⇒ sin[(1 − Â)Δ] = 0
⇒ (1 − |Â|) · |Δ| = nπ
For IH sin[(1 + Â)Δ] = 1
⇒ (1 + |Â|) · |Δ| = (m − 1/2)π

For
$$n = 1$$
 and $m = 2$,
 $L \approx 2540$ km $E_{\nu} \equiv E_{NH} \approx 1.9$
GeV. Dighe,Goswami,Ray, 2010

2540 km (bi)magic baseline

L = 2540 km magic energies: $E_{_{NH}}$ = 1.9 GeV, $E_{_{IH}}$ = 3.3 GeV

2540 km (bi)magic baseline

$sin^22\theta_{13}$	Run time (years), NH	Run time (years), IH	
0.10	0.022	0.048	
0.09	0.026	0.057	
0.08	0.031	0.068	
0.07	0.040	0.082	
0.06	0.051	0.105	
0.05	0.070	0.137	
0.04	0.104	0.195	
0.03	0.180	0.420	
0.02	0.425	2.600	
0.01	2.950	4.800	

S. Raut

Runtime required in years for 3σ hierarchy distinction, for the specified setup, combined with T2K, NOvA and the reactor expts.

NOvA-like det. @ 2540 km with 10 x kt pot/yr NuMI beam (med. E) 7mrad off-axis (\rightarrow peak @ 3.3 GeV)

2540 km (bi)magic baseline ?

Is it "magic" or is it just the increase of the matter effect?

Figure 6: Discovery reach for a normal mass hierarchy at 3σ for CP fractions 0 (lowermost line, best case), 0.5 (middle line) and 1 (uppermost line, worst case) as a function of the baseline. The detector mass, beam power and exposure are kept the same for all baselines.

WG1 summary, NuFact10, Mubai

2540 km (bi)magic baseline ?

Is it "magic" or is it just the increase of the matter effect?

Barger et al., hep-ph/0607177

Figure 8: Discovery reach for CP violation at 3σ for CP fractions 0 (lowermost line, best case), 0.5 (middle line) and 0.75 (uppermost line) as a function of the baseline. The detector mass, beam power and exposure are kept the same for all baselines.

WG1 summary, NuFact10, Mubai

μ 's from τ decays at NuFact

μ 's from τ decays at NuFact

finally alchemy succeeded: making gold out of silver!

μ 's from τ decays at NuFact

right-sign muons N. Sinha important for Dm32, θ23 measurment

wrong-sign muons P. Coloma small impact for CPV sens.

e's from τ decays at MINOS

taus are included in the MINOS analysis MINOS PRELIMINARY nue app. ANN Events/GeV/7x10²⁰ POI 30 **MINOS FD Data** 🚟 Best Fit Signal 🗮 NC 💥 ν_u CC 20 Beam v. CC 💥 ν_τ CC 10 6 Reconstructed Energy (GeV)

Daedalus

 "low-cost" high-power (~MW) cynclotrons + ~100 kt WC + Gd (DUSEL)

Z. Djurcic

Daedalus

 "low-cost" high-power (~MW) cynclotrons + ~100 kt WC + Gd (DUSEL)

- measure θ_{13} and δ by spectral fit

• combine with LBNE beam

Z. Djurcic, P. Huber

Session on neutrino mass models

 Neutrino mass generation from higher dimensional operators T. Ota

 Four Zero neutrino Yukawa textures, mu-tau symmetry and baryogenesis P. Roy

• Quasi-degenerate neutrinos in SO(10) K. Patel

non-standard nu interactions

• CC-like (source and detector)

T. Ota (M. Blennow) tau appearance at near detectors

• NC-like (matter/propagation)

J. Lopez neutrino factory

non-standard nu interactions

- general basis of dim-6 operators
- bounds from charged LFV

Operator	$(\mathcal{C}^{1}_{LQ})_{\alpha}^{\ au}$	$(\mathcal{C}^{3}_{LQ})_{\alpha}^{\tau}$	$(\mathcal{C}_{ED})_{\alpha}^{\ au}$	$(\mathcal{C}_{EU})_{\alpha}^{\tau}$	$(\mathcal{C}_{ED}^{\dagger})_{lpha}^{\ au}$	$(\mathcal{C}^{\dagger}_{EU})_{lpha}^{\ au}$
$\alpha = \mu$	$2.1 \cdot 10^{-4}$	$1.7 \cdot 10^{-4}$	$7.2 \cdot 10^{-4}$	$7.2 \cdot 10^{-4}$	$6.2 \cdot 10^{-4}$	$6.2 \cdot 10^{-4}$
$\alpha = e$	$2.4 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$	$6.9 \cdot 10^{-4}$	$7.1 \cdot 10^{-4}$	$6.0 \cdot 10^{-4}$	$6.1 \cdot 10^{-4}$

■ Bounds are generally $\mathcal{O}(10^{-4})$

Implies reach for probability must generally be $\mathcal{O}(10^{-6}-10^{-8})$

T. Ota (M. Blennow)

non-standard nu interactions

matter NSI at IDS-inspired NuFact setups:

- Sensitivity to off-diagonal NSI parameters:
 - $\epsilon_{e\mu}$: higher energies are the key
 - $\epsilon_{e\tau}$: the MB is the key (stronger correlations)
 - $\epsilon_{\mu\tau} < 10^{-3} 10^{-2}$ Independent of the set up.
- $\left| \mathcal{O}(10^{-3}) \right|$

- CP violation exclusively due to NSI could be measured for reasonable input values of the NSI parameters. Even for $\theta_{13}=0$

J. Lopez

Questions for Next NuFact

- Is there really a synergy between Neutrino Oscillation Expts, LFV expts, Neutrino-less double beta decay expts, direct mass search experiments, SN, LHC....?
- What is the case for precision in neutrino expts? Does it lead to better theoretical understanding?
 - What value of $\sin^2 2\theta_{13}$ is uninterestingly small?
 - Is it really possible to measure NSI in neutrino oscillation expts?

Thank you

WG1 SUMMARY: THEORY WG1 summary, NuFact10, Mubai

WG1 tasks for NuFact 2011

Sensitivity and optimization studies

Questions for Next NuFact

- Is there really a synergy between Neutrino Oscillation Expts, LFV expts, Neutrino-less double beta decay expts, direct mass search experiments, SN, LHC....?
- What is the case for precision in neutrino expts? Does it lead to better theoretical understanding?
- What value of $\sin^2 2\theta_{13}$ is uninterestingly small?

Is it really possible to measure NSI in neutrino oscillation expts?

Thank you

WG1 SUMMARY: THEORY WG1 summary, NuFact10, Mubai

WG1 tasks for NuFact 2011

- Sensitivity and optimization studies
- Write down a consistent model which gives observable non-standard neutrino interactions

Questions for Next NuFact

- Is there really a synergy between Neutrino Oscillation Expts, LFV expts, Neutrino-less double beta decay expts, direct mass search experiments, SN, LHC....?
- What is the case for precision in neutrino expts? Does it lead to better theoretical understanding?
- What value of $\sin^2 2\theta_{13}$ is uninterestingly small?
- Is it really possible to measure NSI in neutrino oscillation expts?

Thank you

WG1 SUMMARY: THEORY WG1 summary, NuFact10, Mubai

WG1 tasks for NuFact 2011

- Sensitivity and optimization studies
- Write down a consistent model which gives observable non-standard neutrino interactions
- Provide physics motivation of LBL oscillations within wider context of particle physics, beyond a relat. small (compared to the scale of the facility) neutrino aficionados circle

WG1 tasks for NuFact 2011

- Sensitivity and optimization studies
- Write down a consistent model which gives observable non-standard neutrino interactions
- Provide physics motivation of LBL oscillations within wider context of particle physics, beyond a relat. small (compared to the scale of the facility) neutrino aficionados circle