Studies of <u>V</u>Cross-Sections by the MINOS Near Detector

Sanjib R. Mishra, University of South Carolina

on behalf of the MINOS Collaboration

inclusive  $V\mu$ -CC Cross-section (3 $\leq$ Ev $\leq$ 50 GeV) Inclusive Anti- $V\mu$ -CC Cross-section (5 $\leq$ Ev $\leq$ 50 GeV)

Status of:  $\stackrel{\scriptstyle \leftarrow}{\scriptstyle \leftarrow}$  MA-Parameter of the Quasi-Elastic V<sub>µ</sub>-CC Interaction

<sup>δ</sup> Coherent-Π0 in V-NC Interaction

## Main Injector Neutrino Oscillation Search



31 Institutions, 140 Physicists



Neutrinos are produced by the **NuMI beam.** The beams composition and energy are measured by the **Near Detector**  The oscillated neutrino beam is measured by the **Far Detector**, at a mine in Minnesota.



Measurements and limits include:

 $\Delta m^2_{32}$ ,  $\sin^2 2\theta_{32}$ ,  $\Delta \overline{m}^2_{32}$ ,  $\sin^2 2\theta_{32}$ ,  $\theta_{13}$ , sterile neutrinos, CPT conservation, cross-sections...





#### **MINOS Near and Far Detectors**

Both detectors are functionally equivalent, in order to reduce systematics.





#### <u>MINOS Inclusive $\sigma(v_{\mu}-CC)$ Measurement Strategy</u>

- Select Inclusive Vµ-CC & Anti-Vµ-CC Events
- \* Determine  $\sigma(V_{\mu}-CC)$  Cross-section at  $3 \le E_{\nu} \le 50$  GeV relative to  $\sigma(V_{\mu}-CC)$  at  $40 \le E_{\nu} \le 200$  GeV:  $\pm 2.1\%$  precision
- Measure Relative-flux (Shape) using Low-V0 Technique
- \* Fix the absolute level using high-Ev region
- \* Apply acceptance/smearing and model-corrections; evaluate systematic errors







**₄**  $V_{\mu}$  ⇒ µ- Focussed;  $P_{\mu}$ ≥1.5 GeV; Ev≥3 GeV

▲ Anti-Vµ ⇒µ+ defocussed; More Stringent µ-ID; Pµ≥1.5 GeV; Ev≥5 GeV

→ Background  $\geq \simeq 2\%$  for Vµ;  $\simeq 5\%$  for Vµ

▲ Acceptance  $\geq \simeq 70\%$  for Vµ;  $\simeq 60\%$  for Vµ at Ev $\simeq 10$  GeV

 $\Leftarrow$ Shape of Vµ or Anti-Vµ Flux

◆ Relative flux vs. energy from low-ν<sub>0</sub> method: SRM, Wold.Sci. 84(1990), Ed.Geesman  $N(E_{\nu}: E_{\text{HAD}} < \nu_{0}) = C\Phi(E_{\nu})f(\frac{\nu_{0}}{E_{\nu}})$ the correction factor  $f(\nu_{0}/E_{\nu}) \rightarrow 1$  for  $\nu_{0} \rightarrow 0$ . \End{aligned} CCFR, NOMAD, NuTeV, MINOS

 $\implies$  Need precise determination of the muon energy scale and good resolution at low  $\nu$  values

LOW- $\nu_0$  METHOD





Sliding ∨0-Cut: ∨0=1GeV for 3≤Ev≤9 GeV; ∨0=2GeV for 9≤Ev≤18 GeV; ∨0=5GeV for 18≤Ev≤50 GeV;
\* Correct for Acceptance, smearing, background
\* Correct for Low-∨0 ≫→ Flux Shape
\* Iterate



Systematic Errors assoc. with Low-VO Flux Model Parameters: QE, Res, DIS Energy Scale: Eµ & EHad Background Acceptance

\$\$









Figure 24: The MINOS  $\nu_{\mu}$  charged current cross section measurement from utilizing the neutrino flux inferred from the muon monitors compared to the measurement from the MINOS Low- $\nu$  method [21] and from NOMAD [20].

<u> $\sigma$ (Anti-V<sub>μ</sub>) &  $\sigma$ (V<sub>μ</sub>) Measurement by MINOS</u>

- ••  $\sigma(\nu_{\mu})$ : from 3.5 Gev (8.2%) to 30 GeV (2.4%)
- **s** σ(Anti- Vμ): from 5.9 Gev (9.5%) to 30 GeV (4.9%)

 $r = \sigma(\text{Anti-} V_{\mu})/\sigma(V_{\mu})$ : from 5.9 Gev (7.2%) to 30 GeV (4.8%)

### Status of Inclusive $\sigma(\nu_{\mu}-CC)$ Quasi-Elastic



# QE

# **Quasi-Elastic Scattering**

• new, modern measurements of QE  $\sigma$  at these energies (on 12C)



## MINOS-QE: details on the one-track selection



## Best Q2 shape fit, including the lowest Q2 region



Best fit  $k_{Fermi}$  scale =1.28,  $E_{\mu}$  scale 0.988, MA Res=1.112 Largest additional systematics in this result are from Hadronic energy scale errors and Intranuclear rescattering

\* Effective MA = 1.19 GeV 
$$^{+0.09}_{-0.10}$$
 (fit)  $^{+0.12}_{-0.14}$  (syst)

\* With  $Q^{**2}>0.3 \Rightarrow MA=1.26 \ 0.11(Fit) \ 0.10 (Syst)$ 

<u>V</u><sub>μ</sub> QE-CC Measurement by MINOS

•  $\sigma(V_{\mu})$ : Interpretation of the MINOS QE-data appear more consistent with MiniBOONE than NOMAD: Higher MA & suppression at Low-Q\*\*2

I-Track analysis; include complementary 2-Track analysis

# Neutrino-Nucleus Coherent NC(π<sup>0</sup>) Scattering

- Reaction Characterized by:
  - Single forward-going  $\pi^0$
  - Nucleus remains in the ground state
  - No charge or isospin transfer
- Monte Carlo (NEUGEN3)
  - Rein-Sehgal (PCAC) model
  - Other models/implementations exist



Coherent NC( $\pi^{0}$ ) reaction

$$\frac{d^2 \sigma(v A \to v \pi A)}{dQ^2 dy d|t|} = \frac{G_F^2}{4\pi^2} \frac{(1-y)}{y} \left(\frac{m_A^2}{Q^2 + m_A^2}\right) f_\pi^2 \frac{d \sigma(\pi A \to \pi A)}{d|t|}$$

## Status of Inclusive V-NC Coherent-π0



# Coherent NC( $\pi^0$ ) Interactions in the Near Detector

- Topological Signature:
  - Single electromagnetic shower
  - No additional hadronic activity
- Backgrounds Reactions with similar topology:
  - NC single  $\pi^0$  dominated
  - CC- $v_{\mu}$  high-y, single  $\pi^{0}$  dominated
  - CC-v<sub>e</sub> quasi-elastic like, no visible recoil proton
  - v-e<sup>-</sup> scattering



- MINOS event rates (2.8x10<sup>20</sup> POT):
  - Roughly 13k coherent NC( $\pi^0$ )
  - About 1 in every 500 events

# **SVM-Based Signal Selection**

- Support Vector Machine (SVM) input variables
  - Shower size variables
    - Shower length
    - Shower width
  - Shower shape variables
    - Pattern of deposited energy
    - Fraction of energy in highest pulse height strips and planes
  - Shower fit variables:
    - Longitudinal profile
    - Transverse profiles
  - Vertex activity (recoil p)
  - Track variables



- The selected MC sample (2.8x10<sup>20</sup> POT):
  - Coherent NC( $\pi^0$ ): 1,044 events
  - Backgrounds: 5,157 events

V-NC Coherent-π0 Analysis:

\*Calibrate Backgrounds [NC-DIS π0, CC-DIS, Ve] Using Control samples

\* Evaluate systematic Error: 33%

\*Open the box and release the result soon

**Backup Slides** 

$$\frac{d\sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_F^2 ME}{\pi} \times \left[ \left( 1 - y - \frac{Mxy}{2E} \right) F_2^{\nu(\bar{\nu})} + \frac{y^2}{2} 2x F_1^{\nu(\bar{\nu})} \pm y \left( 1 - \frac{y}{2} \right) x F_3^{\nu(\bar{\nu})} \right]$$
  
=> Number of events < Nu0  
$$\mathcal{N}(\nu < \nu_0) = \Phi(E_{\nu}) \cdot \int_0^{\nu_0} \int_0^1 \frac{d\sigma}{dxd\nu} dxd\nu$$
$$= C \cdot \Phi(E_{\nu}) \cdot \left[ \left( \nu_0 - \nu_0^2 / 2E_{\nu} \right) \mathcal{F}_2 + \frac{\nu_0^3}{6E_{\nu}^2} \mathcal{F}_1 \pm \left( \frac{\nu^2}{2E_{\nu}} - \frac{\nu^3}{6E_{\nu}^2} \right) \mathcal{F}_3 \right]$$
  
Rearrange terms:

$$\mathcal{N}\left(\nu < \nu_{0}\right) = C \cdot \Phi(E_{\nu}) \cdot \nu_{0} \cdot \left[\mathcal{F}_{2} - \frac{\nu_{0}}{2E_{\nu}}\left(\mathcal{F}_{2} \mp \mathcal{F}_{3}\right) + \frac{\nu_{0}^{2}}{6E_{\nu}^{2}}\left(\mathcal{F}_{2} \mp \mathcal{F}_{3}\right)\right]$$
$$= C \cdot \Phi(E_{\nu}) \cdot \nu_{0} \cdot \left[\mathcal{A} + \left(\frac{\nu_{0}}{E_{\nu}}\right)\mathcal{B} + \left(\frac{\nu_{0}}{E_{\nu}}\right)^{2}\mathcal{C} + \mathcal{O}\left(\frac{\nu_{0}}{E_{\nu}}\right)^{3}\right]$$

N(nu<nu0) is prop. Phi(Enu) up to..