Coherent-ा production experimental review

Hice=Kazu TANAKA
 BNL

NuFact2010 at Mumbai, 10/21/2010

Outline

- Introduction
- Past Measurements
- Recent results
- K2K, MiniBooNE, SciBooN, NOMAD
- Future prospect
- Summary

Coherent pion production

- Neutrino interacts with nucleons coherently, producing a pion
- No nuclear breakup occurs

Charged Current (CC): $v_{\mu}+A \rightarrow \mu+A+\pi^{+}$ Neutral Current (NC): $v_{\mu}+A \rightarrow v_{\mu}+A+\pi^{0}$

From the Rein-Sehgal model:

1) $\sigma(C C)=2 \sigma(N C)$
2) $\sigma(A) \sim A^{1 / 3}$
3) $\sigma(v) \sim \sigma(\bar{v})$

Past measurements

- Measurements for $v, \bar{v} C C$ and NC modes
- for various nuclear targets
- High energy region: >7GeV (CC), >2GeV (NC)
- R\&S model agrees with the high energy results.

Plots from Phys.Lett. B313, 267-275 (1993)

Solid line: Rein-Sehgal model

Experiments	CC/NC	v / \bar{v}	$\mathrm{E}(\mathrm{GeV})$	Target <A>
Aachen-Padova	NC	$\mathrm{v}, \overline{\mathrm{v}}$	2	$\begin{gathered} \mathrm{Al} \\ <27> \end{gathered}$
Gargamelle	NC	v, \bar{v}	2	Freon <30>
CHARM	NC	$\mathrm{v}, \overline{\mathrm{v}}$	20-30	$\begin{gathered} \text { Glass } \\ \text { <20.7> } \end{gathered}$
CHARM II	CC	$\mathrm{v}, \overline{\mathrm{v}}$	20-30	$\begin{gathered} \text { Glass } \\ \text { <20.7> } \end{gathered}$
BEBC	CC	$\overline{\mathrm{v}}$	5-100	$\begin{aligned} & \mathrm{Ne} / \mathrm{H}_{2} \\ & <20> \\ & \hline \end{aligned}$
SKAT	CC, NC	$\mathrm{v}, \overline{\mathrm{v}}$	3-20	$\begin{aligned} & \text { Freon } \\ & \text { <30> } \end{aligned}$
FNAL 15-ft	NC	v	2-100	$\begin{gathered} \mathrm{Ne} / \mathrm{H}_{2} \\ <2 \mathrm{C}> \end{gathered}$
$\begin{gathered} \text { FNAL } 15-\mathrm{ft} \\ \text { E632 } \\ \hline \end{gathered}$	CC	$\mathrm{v}, \overline{\mathrm{v}}$	10-100	$\mathrm{Ne} / \mathrm{H}_{2}$ $<20>$

Recent measurements

Recent experimental results

Exp	Detector K2K-SciBar		Scintillator Fine-grained	CH	v	CC	1.3
MiniBooNE	Mineral oil Cherenkov	CH_{2}	v	NC	0.8	PRL95, 252301 (2005)	
SciBooNE	Scintillator Fine-grained	CH	v	CC	0.8	PRD78, 112004 (2008)	
NOMAD	Drift Chamber	$\sim \mathrm{C}$ CA>12.8)	v	NC	24.8	PLB682, 177 (2009)	
MiniBooNE	Mineral oil Cherenkov	CH	$\mathrm{v}, \overline{\mathrm{v}}$	NC	0.8	PRD81, 013005 (2010)	
SciBooNE	Scintillator Fine-grained	CH	v	NC	0.8	PRD81, 111102 $(R)(2010)$	

- Mostly low energy ($<2 \mathrm{GeV}$) region, except NOMAD
- All results of Carbon target
- Rein-Sehgal model employed for coh-m prediction in all four experiments.

CC coherent-m K2K, SciBooNE

CC coh $-\pi^{+}$measurements

- Two results from K2K and SciBooNE
- Both experiments use the same detector (SciBar=Fully-Active Tracking detector) with different v beam
- K2K: KEK-PS <Ev>=1.3GeV
- SciBooNE: FNAL BNB <Ev>=0.8GeV
- Fine-grained detector allows to isolate coherent-т from resonant-т (background) event-by-event.
- Recoil proton signature

Technique to Identify coh-п

- Separate CC coherent-т from CC resonant-т:
- Identify recoil proton
- Resonant π has nucleon in final state
- No recoiled-nucleon in coherent π
- Low energy proton make an energy deposit around the vertex = vertex activity
: SciBar ADC hit (area α energy deposit)

Large activity (recoil proton)

Small activity

Technique to Identify coh-п

- Separate CC coherent-т from CC resonant-т:
- Identify recoil proton
- Resonant π has nucleon in final state
- No recoiled-nucleon in coherent π
- Low energy proton make an energy deposit around the vertex = vertex activity

SciBooNE

Data deficit at small activity region

Background rejection

SciBooNE example:

1. CC-QE rejection

$\Delta \theta p$: Opening angle between the observed $2^{\text {nd }}$ track and expected track assuming CC-QE.

2. CC resonant π rejection

Select forward-going π (no backward scattering in coherent-т)

CC coherent pion results

K2K

Phys. Rev. Lett. 95, 252301 (2005)
$\sigma(C C$ coh-п) / σ (CC)
$=(0.04 \pm 0.29 \text { (stat.) })_{-0.35}^{+0.32}$ (sys.)) $\times 10^{-2}$
No evidence of CC coherent pion

SciBooNE

Phys. Rev. D78, 112004 (2008)
$\sigma(C C$ coh-т) / σ (CC)
$=\left(0.16 \pm 0.17\right.$ (stat.) ${ }_{-0.27}^{+0.30}$ (sys.) $) \times 10^{-2}$

$\sigma(C C$ coh-т) / σ (CC)
$=\left(0.68 \pm 0.32\right.$ (stat.) ${ }_{-0.25}^{+0.39}$ (sys.) $) \times 10^{-2}$
No evidence of CC coherent pion

Upper limit on cross section

K2K: $\sigma(\mathrm{CC}$ coh $\pi) / \sigma(\mathrm{CC})<0.60 \times 10^{-2}<\mathrm{Ev}>=1.3 \mathrm{GeV}$
SciBooNE: $\sigma(C C$ coh $\pi) / \sigma(C C)<0.67 \times 10^{-2}<E v>=1.1 \mathrm{GeV}$ $\sigma(\mathrm{CC}$ coh $\pi) / \sigma(\mathrm{CC})<1.36 \times 10^{-2}<\mathrm{Ev}>=2.2 \mathrm{GeV}$

K2K and SciBooNE obtained consistent results.

SciBooNE 90\% C.L.

Measured upper limits on $\sigma(C C$ coherent $\pi) / \sigma(C C)$ ratios are converted to upper limits on absolute cross sections by using $\sigma(C C)$ predicted by MC simulation.

SciBooNE v CC coh-m search

- \bar{v} mode can be more sensitive to see CC cohπ event than v mode
- $\quad \sigma(\mathrm{v}$ coh- $\pi) \sim \sigma(\overline{\mathrm{v}}$ coh- $\pi)$ while $\sigma(\mathrm{vCC}-\mathrm{bkg})>\sigma(\overline{\mathrm{V} C C-b k g})$

Reconstructed Q^{2} distributions

H. Tanaka, Nulnt09

Preliminary \& stat. error only

Data "excess" from very forward region?
Define signal region: $\mathrm{Q}^{2}<0.1(\mathrm{GeV} / \mathrm{c})^{2}$ - 139 events observed

- 80 incoherent (Bkg) events (NEUT)
\rightarrow Data - Bkg $=59 \pm 14$ (stat)
cf. NEUT prediction: 151 ($\overline{\mathrm{v}}: 130, \mathrm{v}: 21$)

Similar signature found in v mode too. (K. Hiraide, Nulnt09)

NC coherent-m MiniBooNE, NOMAD, SciBooNE

NC coh- $-\pi^{0}$ measurements

- Four NC coh- π^{0} measurements with three different detectors:
- MiniBooNE (Cherenkov): v and $\bar{v}<E v>\sim 0.8 \mathrm{GeV}$
- NOMAD (Drift Chamber): v <Ev>~25 GeV
- SciBooNE (Fine-grained): v <Ev>~0.8 GeV
- NC coh-m measurement use π^{0} angle to identify coh-m events
- Forward-going π^{0}
- + vertex activity (SciBooNE)

MiniBooNE NC coh- π^{0}

Phys. Lett. B664, 41 (2008)

- Mineral oil Cherenkov detector
- Identify event using hit topology
- Two e-like rings
- Select NC-m0 events within Myy window
- Coherent fraction in NC-1m0:
- 2D [$\left.\mathrm{E}_{\text {то }}\left(1-\cos \theta_{\text {то }}\right), \mathrm{M}_{\mathrm{YV}}\right]$ template fit
$\mathrm{N}_{\text {coh }} /\left(\mathrm{N}_{\text {coh }}+\mathrm{N}_{\text {res }}\right)=(19.5 \pm 1.1 \pm 2.5) \%$
- Clear evidence of NC coh-т0
- The result corresponds to 65% of model prediction (Rein-Sehgal)

MiniBooNE NC coh- π^{0}

- Mineral oil Cherenkov detector
- Identify event using hit topology
- Two e-like rings
- Select NC-m0 events within Myy window
- Coherent fraction in NC-1 m 0 :
- 2D $\left[\mathrm{E}_{\text {то }}\left(1-\cos \theta_{\pi 0}\right), \mathrm{M}_{\mathrm{YV}}\right]$ template fit
$\mathrm{N}_{\text {coh }} /\left(\mathrm{N}_{\text {coh }}+\mathrm{N}_{\text {res }}\right)=(19.5 \pm 1.1 \pm 2.5) \%$
- Clear evidence of NC coh-т0
- The result corresponds to 65% of model prediction (Rein-Sehgal)

Phys. Lett. B664, 41 (2008)

MiniBooNE v \& $\bar{v} N C-1 \pi^{0}$

- New NC-1 π^{0} results for both v and \bar{v} beam modes.
- v and \bar{v} data suggest:
- Clear evidence of nonzero NC coh-т
- Forward angular region is sensitive to model predictions
- Demonstrated comparison between data and models (in the paper)

Phys. Rev. D81, 013005 (2010)
NC-1T0 sample

.... : MC w/o coh-п
— : MC w/ coh-п
NOTE: MC distributions are absolutely normalized

SciBooNE NC coh- π^{0}

: SciBar hit, area α energy deposit

SciBooNE NC coh- π^{0}

: SciBar hit, area α energy deposit

SciBooNE NC coh-п0

Neutral Current Resonant π^{0} has nucleon in final state \rightarrow (no nucleon in coherent π)

Recoiled proton!

Phys. Rev. D81, 111102(R) (2010)
: SciBar hit, area α energy deposit

SciBooNE NC coh-п0

Neutral Current Resonant π^{0} has nucleon in final state \rightarrow (no nucleon in coherent π)

Phys. Rev. D81, 111102(R) (2010)
: SciBar hit, area α energy deposit

SciBooNE NC coh- π^{0}

Neutral Current Resonant π^{0} has nucleon in final state \rightarrow (no nucleon in coherent π)

Energy deposit at vtx

Phys. Rev. D81, 111102(R) (2010)
: SciBar hit, area α energy deposit

NC coh-т0 cross section

Phys. Rev. D81, 111102(R) (2010)

NC coherent π sample (no vertex activity)

NC π^{0} with vertex activity sample

$$
\frac{\sigma\left(\mathrm{NCcoh} \pi^{0}\right)}{\sigma(\mathrm{CC})}=(1.16 \pm 0.24) \times 10^{-2}
$$

Clear evidence of NC coherent pion production.
cf. NEUT prediction based on Rein-Sehgal model:
$\sigma\left(\right.$ NCcoh $\left.\pi^{0}\right) / \sigma(C C)=1.21 \times 10^{-2}$

MiniBooNE \& SciBooNE consistency

- SciBooNE performed a consistency test with MiniBooNE results
- MiniBooNE result:

Coherent-m fraction in NC-1m0 events

$$
R_{\text {coh }}=(19.5 \pm 1.1 \text { (stat) } \pm 2.5 \text { (sys) }) \%
$$

- SciBooNE evaluated the same quantity using on the NC-m0 sample:

$$
R_{\text {coh }}=(17.9 \pm 4.1(\text { stat }+ \text { sys })) \%
$$

- SB and MB consistent with each other, within error.

NOMAD NC coh- π^{0}

- Drift Chamber target (<A>=12.8~Carbon target)
- <Ev>~25 GeV
- Major background: NC DIS
- Magnetized detector
- Momentum reconstruction of e+e- from y -conversion in DC

NOMAD NC coh- π^{0}

- Template fit to extract coh-m cross section
- $\mathrm{Ey}(1-\cos \theta \mathrm{y})$ and 2 Y opening angle
- Clear evidence of NC coh-m0

Good agreement with

 past measurements and R-S prediction
ry opening angle
$\mathrm{E}_{\mathrm{Y} 1}\left(1-\cos \theta_{\mathrm{Y} 1}\right)$
$\frac{\sigma\left(\mathrm{NC} \text { coh } \pi^{0}\right)}{\sigma\left(\mathrm{v}_{\mathrm{u}} \mathrm{CC}\right)}=(3.21 \pm 0.36($ stat $) \pm 0.29($ sys $)) \times 10^{-3} \quad\langle\mathrm{Ev}\rangle=24.8 \mathrm{GeV}$ cf. Rein-Sehgal model: $\sigma\left(\mathrm{NCcoh} \pi^{0}\right) / \sigma(\mathrm{CC})=3.5 \times 10^{-3}$
$\sigma\left(\mathrm{NCcoh} \pi^{0}\right)=(72.6 \pm 8.1$ (stat) ± 6.9 (sys) $) \times 10^{-40} \mathrm{~cm}^{2} /$ nucleus
cf. Rein-Sehgal model: $\sigma(\mathrm{NCcohm} 0)=78 \times 10^{-40} \mathrm{~cm}^{2} /$ nucleus

Quick digest of recent results

- CC coherent- π^{+}: No evidence at low energy ($\leq 2 \mathrm{GeV}$)
- K2K, SciBooNE: consistent with each other
- BUT SciBooNE v̄ CC coh-m search seeing non-zero CC coh-т events? (analysis underway)
- NC coherent- π^{0} : Clear evidence
- MiniBooNE, SciBooNE: consistent with each other
- NOMAD: Consistent with past measurements at high energy
- Puzzle in CC/NC coh-ד at low energy...
- R-S model predict $\sigma\left(\mathrm{CC}: \pi^{+}\right) / \sigma\left(\mathrm{NC}: \pi^{0}\right) \sim 2$
- Need a bridge between low and high energies for CC and NC modes \rightarrow New experiments!

The Future is Here

- T2K and MINERvA are taking data!
- Both detectors designed to measure cross sections
- Cover wide energy range:
 $\sim 0.7-20 \mathrm{GeV}$
- Various targets:
- MINERvA: He, C, Water, Fe, Pb
- T2K Near Detector: C, H2O
- \rightarrow Can measure A-dependence of coh-m production.

Summary

- Recent coherent-m measurements
- CC: K2K, SciBooNE
- NC: MiniBooNE, NOMAD, SciBooNE
- High statistics, systematic error dominating (major systematics from background modeling: resonant-m, multi-m, DIS, and their FIS)
- Reliable predictions of backgrounds are important to extract coherent-m.
- Both theoretical and experimental efforts are needed
- Next generation experiments, T2K and MINERvA, can complete the comprehensive study of coherentπ production.

