Coherent-m production experimental review

Hide-Kazu TANAKA BNL

NuFact2010 at Mumbai, 10/21/2010

Outline

- Introduction
- Past Measurements
- Recent results
 - K2K, MiniBooNE, SciBooN, NOMAD
- Future prospect
- Summary

Coherent pion production

- Neutrino interacts with nucleons coherently, producing a pion
- No nuclear breakup occurs

Charged Current (CC): $v_{\mu}+A \rightarrow \mu+A+\pi^{+}$ Neutral Current (NC): $v_{\mu}+A \rightarrow v_{\mu}+A+\pi^{0}$

From the Rein-Sehgal model:

1) $\sigma(CC) = 2 \sigma(NC)$ 2) $\sigma(A) \sim A^{1/3}$ 3) $\sigma(v) \sim \sigma(\overline{v})$

Characterized by a small momentum transfer to the nucleus, forward going π .

Past measurements

- Measurements for v, \overline{v} CC and NC modes
 - for various nuclear targets
- High energy region: >7GeV (CC), >2GeV (NC)
- R&S model agrees with the high energy results.

Plots from Phys.Lett. B313, 267-275 (1993)

	Experiments	CC/NC	$\nu / \overline{\nu}$	E (GeV)	Target <a>
	Aachen-Padova	NC	ν, ν	2	Al <27>
	Gargamelle	NC	ν, ν	2	Freon <30>
	CHARM	NC	ν, ν	20-30	Glass <20.7>
	CHARM II	СС	ν, ν	20-30	Glass <20.7>
	BEBC	СС	$\overline{\nu}$	5-100	Ne/H ₂ <20>
	SKAT	CC, NC	ν, ν	3-20	Freon <30>
+	FNAL 15-ft	NC	ν	2-100	Ne/H2 <20>
	FNAL 15-ft E632	CC	v, \overline{v}	10-100	Ne/H ₂ <20>

Dotted line: Bel'kov-Kopeliovich

Recent measurements

Recent experimental results

Exp	Detector	Target	$\nu/\bar{\nu}$	Mode	Ev (GeV)	Publication
K2K-SciBar	Scintillator Fine-grained	СН	ν	CC	1.3	PRL95, 252301 (2005)
MiniBooNE	Mineral oil Cherenkov	CH ₂	ν	NC	0.8	PLB664, 41 (2008)
SciBooNE	Scintillator Fine-grained	СН	ν	CC	0.8	PRD78, 112004 (2008)
NOMAD	Drift Chamber	~C (<a>=12.8)	ν	NC	24.8	PLB682, 177 (2009)
MiniBooNE	Mineral oil Cherenkov	CH ₂	ν, ⊽	NC	0.8	PRD81, 013005 (2010)
SciBooNE	Scintillator Fine-grained	СН	ν	NC	0.8	PRD81, 111102 (R) (2010)

- Mostly low energy (<2GeV) region, except NOMAD</p>
- All results of Carbon target
- Rein-Sehgal model employed for coh-π prediction in all four experiments.

CC coh-π⁺ measurements

- Two results from K2K and SciBooNE
 - Both experiments use the same detector (SciBar=Fully-Active Tracking detector) with different v beam
 - K2K: KEK-PS <Ev>=1.3GeV
 - SciBooNE: FNAL BNB <Ev>=0.8GeV
- Fine-grained detector allows to isolate coherent-π from resonant-π (background) event-by-event.
 - Recoil proton signature

Technique to Identify coh-π

- Separate CC coherent-π from CC resonant-π:
 - Identify recoil proton
 - Resonant π has nucleon in final state
 - No recoiled-nucleon in coherent π
- Low energy proton make an energy deposit around the vertex = vertex activity

: SciBar ADC hit (area energy deposit)

Technique to Identify coh-π

- Separate CC coherent-π from CC resonant-π:
 - Identify recoil proton
 - Resonant π has nucleon in final state
 - No recoiled-nucleon in coherent π
- Low energy proton make an energy deposit around the vertex = vertex activity

Data deficit at small activity region

Background rejection

SciBooNE example:

1. CC-QE rejection

 $\Delta \theta p$: Opening angle between the observed 2nd track and expected track assuming CC-QE.

2. CC resonant π rejection

Select forward-going π (no backward scattering in coherent- π)

CC coherent pion results

K2K Phys. Rev. Lett. 95, 252301 (2005)

 $\sigma(CC \text{ coh-}\pi) / \sigma (CC)$ = (0.04 ± 0.29 (stat.) $^{+0.32}_{-0.35}$ (sys.)) x 10⁻²

No evidence of CC coherent pion

SciBooNE Phys. Rev. D78, 112004 (2008)

 $\sigma(CC \text{ coh-}\pi) / \sigma(CC)$

 $\sigma(CC \operatorname{coh}-\pi) / \sigma(CC)$

=
$$(0.68 \pm 0.32 \text{ (stat.)} + 0.39 - 0.25 \text{ (sys.)} \times 10^{-2}$$

No evidence of CC coherent pion

11

Upper limit on cross section

K2K: $\sigma(CC \cosh \pi)/\sigma(CC) < 0.60 \times 10^{-2} < Ev > = 1.3 GeV$

SciBooNE: $\sigma(CC \cosh \pi)/\sigma(CC) < 0.67 \times 10^{-2} < Ev>=1.1GeV$ $\sigma(CC \cosh \pi)/\sigma(CC) < 1.36x10^{-2} < Ev > = 2.2GeV$

K2K and SciBooNE obtained consistent results.

SciBooNE ν CC coh-π search • ν sector work continuent see CC coh-Cople anthran science by the nce: Δφ

NC coherent-TT MiniBooNE, NOMAD, SciBooNE

NC coh-π⁰ measurements

- Four NC coh-π⁰ measurements with three different detectors:
 - MiniBooNE (Cherenkov): v and \bar{v} <Ev>~0.8 GeV
 - NOMAD (Drift Chamber): ν <Ev>~25 GeV
 - SciBooNE (Fine-grained): ν <Ev>~0.8 GeV
- NC coh-π measurement use π⁰ angle to identify coh-π events
 - Forward-going π^0
 - + vertex activity (SciBooNE)

MiniBooNE NC coh-TT⁰ Phys. Lett. B664, 41 (2008)

- Mineral oil Cherenkov detector
- Identify event using hit topology
 - Two e-like rings
- Select NC-π0 events within Mγγ window
- Coherent fraction in NC-1π0:
 - 2D [E_{π0}(1-cosθ_{π0}), M_{γγ}] template fit
 - $N_{coh}/(N_{coh}+N_{res}) = (19.5\pm1.1\pm2.5)\%$
- Clear evidence of NC coh-π0
- The result corresponds to 65% of model prediction (Rein-Sehgal)

- Mineral oil Cherenkov detector
 - Identify event using hit topology
 - Two e-like rings
- Select NC-π0 events within Mγγ window
- Coherent fraction in NC-1π0:
 - 2D [E_{π0}(1-cosθ_{π0}), M_{γγ}] template fit

 $N_{coh}/(N_{coh}+N_{res}) = (19.5\pm1.1\pm2.5)\%$

- Clear evidence of NC coh-π0
- The result corresponds to 65% of model prediction (Rein-Sehgal)

MiniBooNE v & \bar{v} NC-1 π^{0}

- New NC-1π⁰ results for both v and v beam modes.
- v and \overline{v} data suggest:
 - Clear evidence of nonzero NC coh-π
 - Forward angular region is sensitive to model predictions
 - Demonstrated comparison between data and models (in the paper)

Phys. Rev. D81, 013005 (2010)

N_{x10} C-1 π 0 sample

----- : MC w/o coh-π —_ : MC w/ coh-π

NOTE: MC distributions are absolutely normalized

Clear evidence of NC coherent pion production.

cf. NEUT prediction based on Rein-Sehgal model: $\sigma(NCcoh\pi^0)/\sigma(CC) = 1.21x10^{-2}$

MiniBooNE & SciBooNE consistency

- SciBooNE performed a consistency test with MiniBooNE results
- MiniBooNE result: Coherent-π fraction in NC-1π0 events

 $R_{coh} = (19.5 \pm 1.1(stat) \pm 2.5(sys))\%$

 SciBooNE evaluated the same quantity using on the NC-π0 sample:

R_{coh} = (17.9±4.1(stat+sys))%

SB and MB consistent with each other, within error.

NOMAD NC coh-π⁰

- Drift Chamber target (<A>=12.8 ~ Carbon target)
- Ev>~25 GeV
 - Major background: NC DIS
- Magnetized detector
 - Momentum reconstruction of e+e- from γ-conversion in DC

NOMAD NC coh-π⁰

- Template fit to extract coh-π cross section
 - Eγ(1-cosθγ) and 2γ opening angle
- Clear evidence of NC coh-π0
 - Good agreement with past measurements and R-S prediction

 $\frac{\sigma(\text{NCcoh}\pi^0)}{\sigma(v_{\mu}\text{CC})} = (3.21\pm0.36(\text{stat})\pm0.29(\text{sys}))\times10^{-3} \quad <\text{Ev}>=24.8 \text{ GeV}$

cf. Rein-Sehgal model: $\sigma(NCcoh\pi^0)/\sigma(CC) = 3.5x10^{-3}$

 $\sigma(NCcoh\pi^0) = (72.6\pm8.1(stat)\pm6.9(sys))x10^{-40} cm^2/nucleus$

cf. Rein-Sehgal model: $\sigma(NCcoh\pi 0) = 78x10^{-40} \text{ cm}^2/\text{nucleus}$

Quick digest of recent results

- CC coherent-π⁺: No evidence at low energy (<2GeV)
 - K2K, SciBooNE: consistent with each other
 - BUT SciBooNE v
 CC coh-π search seeing non-zero
 CC coh-π events? (analysis underway)
- NC coherent-π⁰: Clear evidence
 - MiniBooNE, SciBooNE: consistent with each other
 - NOMAD: Consistent with past measurements at high energy
- Puzzle in CC/NC coh-π at low energy...
 - R-S model predict $\sigma(CC:\pi^+)/\sigma(NC:\pi^0)~2$
- Need a bridge between low and high energies for CC and NC modes
 → New experiments!

The Future is Here

- T2K and MINERvA are taking data!
- Both detectors designed to measure cross sections
 - Cover wide energy range: ~0.7 - 20 GeV
 - Various targets:
 - MINERvA: He, C, Water, Fe, Pb
 - T2K Near Detector: C, H2O
 - → Can measure A-dependence of coh-π production.

Summary

- Recent coherent-π measurements
 - CC: K2K, SciBooNE
 - NC: MiniBooNE, NOMAD, SciBooNE
 - High statistics, systematic error dominating (major systematics from background modeling: resonant-π, multi-π, DIS, and their FIS)
- Reliable predictions of backgrounds are important to extract coherent-π.
- Both theoretical and experimental efforts are needed
- Next generation experiments, T2K and MINERvA, can complete the comprehensive study of coherentπ production.