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Motivations: why scaling FFAG?

With betatron tunes that do not vary with energy,
the scaling type of FFAG is:

(i) free from resonance crossing issues, large
transverse acceptances can be achieved;

(ii) free from the issue of time-of-flight
dependence on the transverse amplitude®). This
means no longitudinal emittance degradation
when beams with large transverse emittances are

accelerated.

*
() see S. Berg, Nucl. Instr. and Meth. A 570, p.~15, (2007).
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Outline

¢ Overview: 3.6 to 12.6 GeV muon ring
(from T. Planche’s PhD)

¢ “Advanced” Scaling FFAG ingredients

¢ Study of “Advanced” Scaling FFAG: experiment at
KURRI

¢ Applications for muons: PRISM
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$ “Advanced” Scaling FFAG ingredients

$ Study of “Advanced” Scaling FFAG: experiment at
KURRI

$ Applications for muons: PRISM
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Lattice Constraints

scaling FFAG lattice:

(1) with > 30 m mm-rad of normalized transverse
acceptance for both horizontal and vertical plane,
and > 150 mm of normalized longitudinal
acceptance,

(ii) using 200 MHz constant frequency rf cavities

(iii) with the possibility of accelerating simulta-
neously ptand p beams.
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Stationary bucket acceleration

¢ Principle: use the synchrotron motion to accelerate
beam inside a stationary rf bucket.
14
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Longitudinal phase space showing
the acceleration of a muon beam (red)
inside the above transition stationary
rf bucket of a scaling FFAG ring.
Hamiltonian contour are shown in

black.
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Achievable bucket height

In scaling FFAG, since the
momentum compaction o
1S constant.

=For ultra-relativistic
particles, the longitudinal
motion 1s fully determined 500 1000 1500 2000 2500 3000

k (ﬁeld index)
GV()
) Maximum relative energy increase using acceleration inside
h E the above-transition rf bucket of a scaling FFAG.
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Transverse acceptance: choice of
the working point
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Horizontal (left diagram) and vertical (right diagram) acceptances scan using KUT-code.
The area of each square is proportional to the normalized acceptance. Normal structure
resonances lines, plotted up to the octupole, are superimposed.
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Example of a 3.6 to 12.6 GeV muon ring

Table 1 - Scaling FFAG muon rings parameters

Lattice type FDF triplet

Injection (kin) energy 3.6 GeV

Extraction energy 12.6 GeV

rf frequency 200 MHz

Mean radius ~ 161 m

Synchronous kinetic energy  8.04 GeV

Harmonic number A 675

Number of cells 225

Field index k& 1390

Peak rf voltage (per turn) 1.8 GV

Number of turns §

Bz (@ 12.6 GeV) 39T

Drift length b

Horiz. phase adv./cell 85.86 deg. ~100
Vert. phase adv./cell 33.81 deg. ~150
Excursion 14.3 cm -150-100 =50 0 50 100 150

X [m]

3.6 to 12.6 GeV muon ring layout
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Example of a 3.6 to 12.6 GeV muon ring

Table 1 - Scaling FFAG muon rings parameters

Lattice type FDF triplet
Injection (kin) energy 3.6 GeV
Extraction energy 12,666V
rf frequency 200 MHz
Mean radius ~ 101 m
Synchronous kinetic energy  8.04 GeV
Harmonic number A 675
Number of cells 225
Field index & 1390
Peak rf voltage (per turn) 1.8 GV
Number of turns 6
Bz (@ 12.6 GeV) 3.9 T
Drift length Tl 5 s 0]
Horiz. phase adv./cell 85.86 deg.
Vert. phase adv./cell 33.81 deg.
Excursion 14.3 cm -150-100 =50 0 50 100 150

X [m]

3.6 to 12.6 GeV muon ring layout
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Example of a 3.6 to 12.6 GeV muon ring

Table 1 - Scaling FFAG muon rings parameters

Lattice type FDF triplet

Injection (kin) energy 3.6 GeV

Extraction energy 12.6 GeV

rf frequency 200 MHz

Mean radius ~ 161 m

Synchronous kinetic energy  8.04 GeV

Harmonic number h 675

Number of cells 225

Field index £ 1390

Peak rf voltage (per turn) 1.8 GV

Number of turns 6

Binas (@ 12.6 GeV) 3.9 T

Drift length ~ 1.5m Horizontal (red) and vertical (purple) beta
Horiz. phase adV-/ cell 85.86 deg. function at 3.6 GeV, calculated using set-wise
Vert. phase adv. / cell 33.81 deg. tracking in soft-edge field model from small
Excursion 14.3 cm amplitude motion around the closed orbit.

Position of the magnets effective field
boundaries are shown with rectangles.
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Example of a 3.6 to 12.6 GeV muon ring

Simultaneous acceleration of u" and - beams:

In order to allow the simultaneous acceleration of pu+
and p beams, the synchronous particle orbit length is
adjusted to a multiple of Y20:41.
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Transverse acceptance at fixed energy

Horizontal acceptance > 30,000 m.mm.mrad normalized:

KUT-code ‘FFAG’ procedure of Zgoubi

160.8 160.86 160.92 160.8 160.86 160.92
r [m] r [m]

(1, r') plane showing a multi-turn tracking of 2 particles with different initial

horizontal amplitudes, with an initial vertical displacement = 1 mm.
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Transverse acceptance at fixed energy

Vertical acceptance ~ 30,000 m.mm.rad normalized:

KUT-code ‘FFAG’ procedure of Zgoubi

(z, z') plane showing a multi-turn tracking of 2 particles with different initial

vertical amplitudes, with an initial horizontal displacement = 1 mm.
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Full acceleration cycle
- 6D tracking -

¢ 1000 particles are uniformly distributed inside a
transverse 4D ellipsoid (Waterbag distribution).

¢ These particles are then independently distributed
uniformly inside an ellipse in the longitudinal plane.

¢ Initial normalized bunch emittances are 30 m.mm.rad
in both horizontal and vertical planes and 150 mm in
the longitudinal plane.

¢ RF kicks used to simulate the effect of this rf gaps
distributed around the ring
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6D tracking results
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longitudinal phase space plot showing a 6-turn acceleration
cycle. Hamiltonian contours are superimposed.

15 Scaling FFAG for muon acceleration - JB. Lagrange



6D tracking results

Initial (blue) and final (red) particles distribution in the horizontal (top), and

vertical (bottom) phase space.
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6D tracking results

Initial (blue) and final (red) particles distribution in the horizontal (top), and

vertical (bottom) phase space.
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6D tracking results

®No beam loss.
®No significant transverse emittance degradation.
®No significant longitudinal emittance degradation.

e Efficient use of the rf.
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Study with errors

¢ Direction of the translation is randomly and
uniformly chosen in the 3D space. The amplitude of
the displacement is chosen following a Gaussian
distribution with null mean.

¢ 200 particles are tracked over a whole acceleration
cycle (6 turns). Collimators placed in the middle of

every long straight section to stop particles going at
160.7<r<161.1m, and |z!| > 90 mm.
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Study with errors
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Error in translation: number
of surviving particles
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depending on the rms error.
20 different lattices have
been generated and tested
for each value of rms error.

O

(O)]
o

0)
Q
—
O
-—
i)
Y
(+]
Q,
o
c
-
>
-
>
“
3
)
H
@)
Y
o
Q
g
S
a

(@)

0.1 1
rms alignment error [mm]

Compared to the linear non-scaling FFAG: one order of
magnitude better tolerance to errors!
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Overview - Summary
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Overview - Summary

® World-first detailed study of stationary bucket
acceleration: analytical understanding + numerical
approaches.
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Overview - Summary

® World-first detailed study of stationary bucket
acceleration: analytical understanding + numerical
approaches.

®Detailed design of a 3.6 to 12.6 GeV muon ring.
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Overview - Summary

® World-first detailed study of stationary bucket
acceleration: analytical understanding + numerical
approaches.

®Detailed design of a 3.6 to 12.6 GeV muon ring.

®Satisfies all requirements: acceptance, RF frequency,
simultaneous acceleration of w" and .
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Overview - Summary

® World-first detailed study of stationary bucket
acceleration: analytical understanding + numerical
approaches.

®Detailed design of a 3.6 to 12.6 GeV muon ring.

®Satisfies all requirements: acceptance, RF frequency,
simultaneous acceleration of w" and L.

eSimple and robust scheme.
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Overview - Summary

® World-first detailed study of stationary bucket
acceleration: analytical understanding + numerical
approaches.

®Detailed design of a 3.6 to 12.6 GeV muon ring.

®Satisfies all requirements: acceptance, RF frequency,
simultaneous acceleration of w" and .

eSimple and robust scheme.

= Scaling FFAG can be used as an injector to the
linear non-scaling FFAG.
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Outline

$ Overview: 3.6 to 12.6 GeV muon ring

¢ “Advanced” Scaling FFAG ingredients

$ Study of “Advanced” Scaling FFAG: experiment at
KURRI

§ Applications for muons: PRISM
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Scaling law

Bending case

- Similarity of the closed orbits
-Invariance of the betatron oscillations

Magnetic field: B, = B (L)

B, &0,
with k = % (8(% >

NB: In the linear approximation, k = ;n

Momentum compaction factor: o =

ol

Dispersion function: D(po) ==100 (%) = i _T_ 1
/s PO
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Scaling law
Straight case

- Similarity of the closed orbits
-Invariance of the betatron oscillations

Magnetic field: B, = Bl o)

. 1 ob,
wit m—B 24

NB: In the linear approximation, m =

DS

Momentum compaction factor: a =0

k
Linear approx.: lim (L) = Lo

Tog—CC




Insertions
Matching of different scaling FFAG cells

1) Matching of the closed/reference orbits

a) Matching of a special momentum Pj.

b) Matching to the first order in AR/ Ry
by matching of the dispersion of
the different cells.

2) Matching of the periodic linear parameters

As much as possible (the more the better)
Often difficult » n-phase advance for one of the cell(s)
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Insertions

Dispersion suppressor principle

Use of 3 different scaling FFAG cells

a) Matching of a special momentum P,.
Dy + D3

%

b) Matching of periodic dispersions such as Dy =

distance to
Po-reference
trajectory

R

Zero-chromatic system as long as
amplitude detuning can be neglected.
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Outline

$ Overview: 3.6 to 12.6 GeV muon ring
(from T. Planche’s PhD)

$ “Advanced” Scaling FFAG ingredients

f; ¢ Study of “Advanced” Scalmg FFAG: exper1ment at ;

¥ Appl1cat1ons for muons: PRISM
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Study of Advanced
Scaling FFAG

In Kyoto University, an experiment is planned
to be conducted in order to study these new tools.

2 goals for this experiment:
® Verify the straight field law,

® Verify and study the dispersion suppressor principle.
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Experiment

Layout of the experiment

H- linac injection beam line

% H AT
HTH =R
h

Use of 2 energies: 3.5 MeV and 7 MeV.
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Experiment
Straight field law

i
_O ° 2

0 0.4 0.8 1.2 1.6 2 2.4 2.8
X [m]

Use of steering magnets for the shifts of the orbits
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Experiment

Dispersion suppressor and magnets

scaling FFAG line and
dispersion suppressor

prototype

@ @ " Schematic view of
Fl D F2 D Fl

[
e —————e SR

0O 0.4 0.8 1.2 1.6
X [m]
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Outline

$ Overview: 3.6 to 12.6 GeV muon ring
(from T. Planche’s PhD)

$ “Advanced” Scaling FFAG ingredients
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¢ Applications for muons: PRISM
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Applications

PRISM project

Muon phase rotator y i
Pion Capture Section

(at Osaka University) _ o

® Momentum acceptance:
68MeV /c +20%

® Jransverse acceptance:

® hor.: 30 000t mm.mrad

e vert.: 3 000m mm.mrad
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Applications

Race-track scaling FFAG PRISM

Bending cell FDF triplet

k-value 2.99
Average radius 2T 1
Phase advances:

Horizontal g, 60 deg.
Vertical u, 90 deg.
Dispersion 0.8m

Straight cell

m-value L3t
Length 1.8m
Phase advances:

Horizontal i, 27 deg.
Vertical ., 94 deg.
Dispersion 0.8m
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Applications

Acceptances of race-track PRISM
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Horizontal (left) and vertical (right) acceptance of the ring over 30 turns
Far collimators identity lost particles
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Applications

Betafunctions (half ring) of race-track PRISM
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S [m]
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Applications

Another solution?




Summary

®Scaling FFAG lattices have intrinsic good features
(fixed field magnets, large acceptance, possibility of
using constant RF cavities) for muon acceleration.

®New tools have been recently developed to introduce
more flexibility of the scaling FFAG for muon
acceleration.

® This is only the start!
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Thank you for your attention



Simulation tools

Step-wise particle tracking in geometrical field models

® Two codes:
® KUT-code,
® + benchmark using Zgoubi.

® Mid-plane field distribution

tollows:
s k
B(r,0) = By <—) F6).
70
@ Enge type Of ﬁeld fall-off . Vertical component of the magnetic field along

i ; : : the closed orbits at 3.6 GeV (dot-dashed line),
®Field off the mid-plane is obtained, 8.0 GeV (dotted line) and 12.6 GeV (solid line).

from a 4th order expansion (following
Maxwell’s equations).
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