NSI at Neutrino Factories: CP violation & correlation effects

Jacobo López-Pavón IPPP Durham University

NuFact10

IFTR, Mumbai, October 20-25, 2010

Based on a collaboration with:

P. Coloma, A. Donini (IFT UAM/CSIC) and H. Minakata (TMU)

Very Brief Motivation

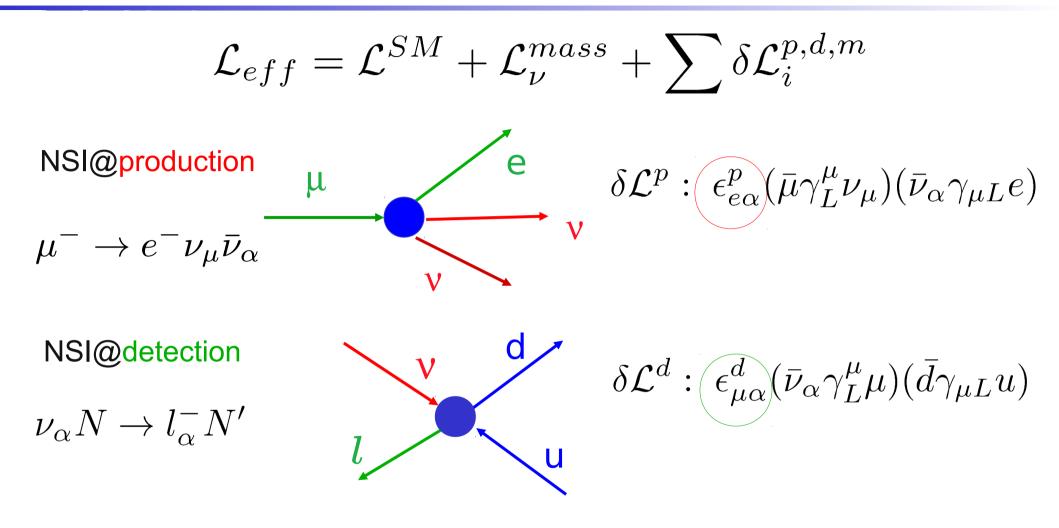
• Neutrino masses and mixing \rightarrow evidence of Physics Beyond the SM

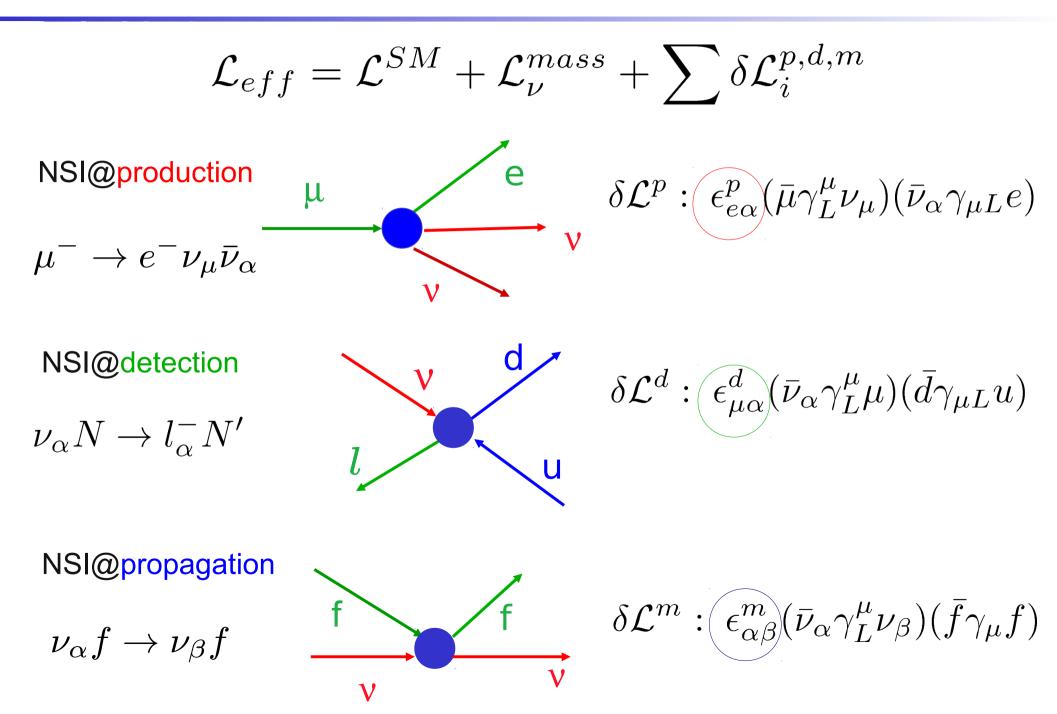
- NSI: a phenomenological way of parameterizing the whole possible New Physics effects in neutrino oscillations.
- We will focus on NSI effects in neutrino propagation. Paying special attention to:
 - Correlations among the oscillation parameters.
 - CP violation effects.

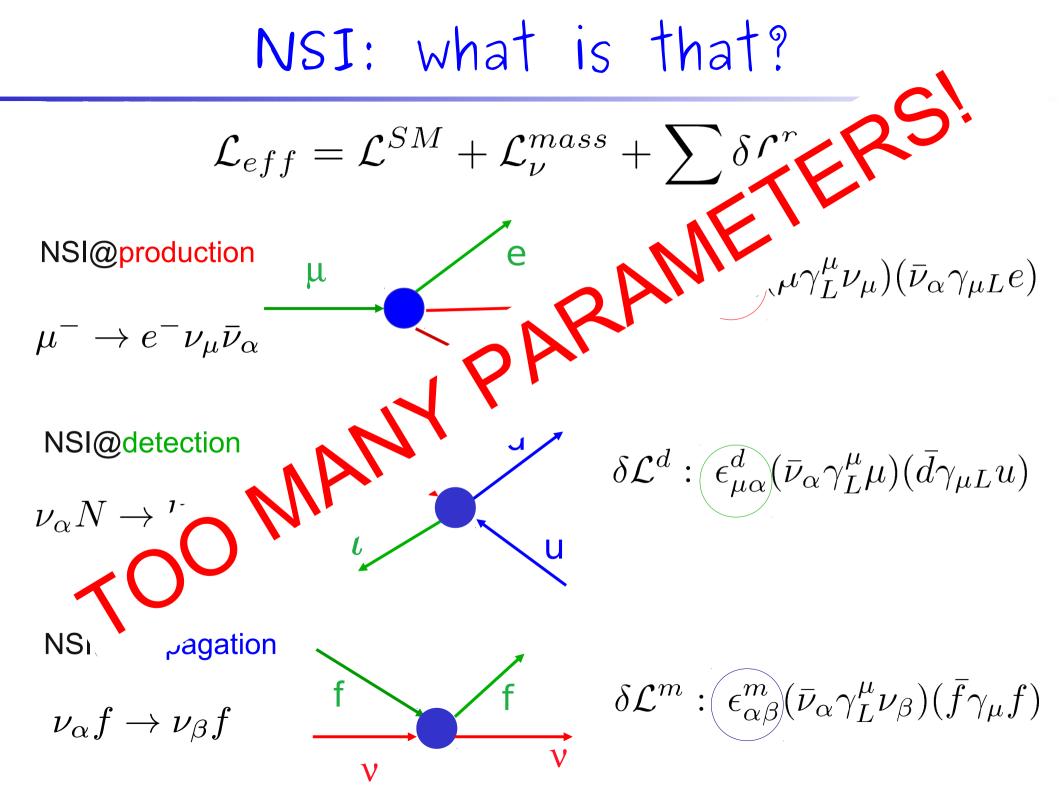
$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum \delta \mathcal{L}_{i}^{p,d,m}$$

$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum \delta \mathcal{L}_{i}^{p,d,m}$$

$$\text{NSI@production} \qquad \mu \qquad e^{-} \nu_{\mu} \bar{\nu}_{\alpha} \qquad \nu \qquad \delta \mathcal{L}^{p} : e^{p}_{e\alpha} (\bar{\mu} \gamma_{L}^{\mu} \nu_{\mu}) (\bar{\nu}_{\alpha} \gamma_{\mu L} e)$$







$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum \delta \mathcal{L}_{i}^{p,d,m}$$

Near Detectors

See Mattias Blennow's talk arXiv:1005.0756 [hep-ph] MINSIS workshop report, arXiv:1009.0476 [hep-ph] NSI@production

$$\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha$$

NSI@detection

$$\nu_{\alpha}N \to l_{\alpha}^{-}N'$$

NSI@propagation

$$u_{lpha} f
ightarrow
u_{eta} f$$

$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum \delta \mathcal{L}_{i}^{p,d,m}$$

Near Detectors

See Mattias Blennow's talk arXiv:1005.0756 [hep-ph] MINSIS workshop report, arXiv:1009.0476 [hep-ph]

> Effective matter Potential: Far Detectors

NSI@production

$$\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha$$

NSI@detection

$$\nu_{\alpha}N \to l_{\alpha}^{-}N'$$

NSI@propagation

$$u_{lpha} f
ightarrow
u_{eta} f$$

$$\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum \delta \mathcal{L}_{i}^{p,d,m}$$

Near Detectors

See Mattias Blennow's talk arXiv:1005.0756 [hep-ph] MINSIS workshop report, arXiv:1009.0476 [hep-ph]

NSI@production

$$\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha$$

NSI@detection

$$\nu_{\alpha}N \to l_{\alpha}^{-}N'$$

Effective matter Potential: Far Detectors NSI@propagation

$$u_{lpha} f
ightarrow
u_{eta} f$$

NSI in propagation

In the SM flavour basis

NSI in propagation

• Model independent approach. Mild experimental constraints:

	$(4.2 \ 0.33 \ 3.0)$	(2.5	0.21 1.7
$ \varepsilon^\oplus_{\alpha\beta} <$	$0.33 \ 0.068 \ 0.33$	$ \varepsilon^{\odot}_{lphaeta} <$	0.21	$0.046 \ 0.21$
	$(3.0 \ 0.33 \ 21)$		1.7	0.21 9.0

neutral Earth-like matter

neutral Solar-like matter

C. Biggio, M. Blennow and E.Fernandez-Martinez; ArXiv: 0907.0097

 However, theoretically, NSI parameters are not expected to be as huge. They come from New Physics at higher energies.

NSI in propagation

• NSI effects in propagation have been widely studied in the literature, even in a Neutrino Factory.

Blennow, Meloni, Ohlsson, Terranova, Westerberg, arXiv:0804.2744 [hep-ph] Kopp, Ota, Winter, arXiv:0804.2261 [hep-ph] etc

- However, up to now, no correlations studied before.
- We want to study correlations

Many parameters at the same time in the simulations!

 MonteCUBES allows to introduce all parameters at once (M.Blennow, E. Fernández-Martínez; arXiv:0903.3985 [hep-ph])

Why a Neutrino Factory?

- Long baseline
- High energies
- Multi-channel facility

Large matter effects!

Why a Neutrino Factory?

- Long baseline
- High energies
- Multi-channel facility
- Nice sensitivities to standard oscillation parameters

Large matter effects!

• But...what if θ_{13} is measured soon?

1. IDS25:

- 25 GeV muons;
- Two 50 kton MIND detectors
 - @4000 km
 - @7500 km
- 5×10^{20} useful muon decays/year/baseline/polarity

1. IDS25:

- 25 GeV muons;
- Two 50 kton MIND detectors
 - @4000 km
 - @7500 km
- 5×10^{20} useful muon decays/year/baseline/polarity

2. IDS50: 50 GeV upgrade of the IDS25

Set ups

But the NF is multi-channel! We will study a 3rd setup:

- 3. 1B50:
 - 50 GeV muons:
 - A composite detector @ 4000 km:
 - 50 kton MIND to detect muons;
 - 4 kton MECC to detect taus
 - Double flux: 10^{21} useful muon decays/year/polarity

Brief review of the analytical dependences:

• $\epsilon_{\alpha\alpha}$ appear always in the same combination:

 $\epsilon_{ee} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{3}\right)$ $\epsilon_{\mu\mu} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{2}\right) \text{ only in } P_{\mu\mu}, P_{\mu\tau}$

Brief review of the analytical dependences:

• $\epsilon_{\alpha\alpha}$ appear always in the same combination:

$$\epsilon_{ee} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{3}\right)$$

$$\epsilon_{\mu\mu} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{2}\right) \text{ only in } P_{\mu\mu}, P_{\mu\tau}$$

• Up to second order, $P_{e\mu}$ and $P_{e\tau}$ only depend on $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$:

cuadratic dependence

Brief review of the analytical dependences:

• $\epsilon_{\alpha\alpha}$ appear always in the same combination:

$$\epsilon_{ee} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{3}\right)$$

$$\epsilon_{\mu\mu} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{2}\right) \text{ only in } P_{\mu\mu}, P_{\mu\tau}$$

• Up to second order, $P_{e\mu}$ and $P_{e\tau}$ only depend on $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$:

cuadratic dependence

• Linear dependence on $\epsilon_{\mu\tau}$:

$$P_{\mu\mu}^{NSI} = -P_{\mu\tau}^{NSI} = -\operatorname{Re}\left(\epsilon_{\mu\tau}\right)\left(AL\right)\sin\left(\Delta_{31}L\right) + \mathcal{O}\left(\epsilon^{2}\right)$$

Brief review of the analytical dependences:

• $\epsilon_{\alpha\alpha}$ appear always in the same combination:

$$\epsilon_{ee} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{3}\right)$$

$$\epsilon_{\mu\mu} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{2}\right) \text{ only in } P_{\mu\mu}, P_{\mu\tau}$$

• Up to second order, $P_{e\mu}$ and $P_{e\tau}$ only depend on $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$:

cuadratic dependence

• Linear dependence on $\epsilon_{\mu\tau}$:

$$P_{\mu\mu}^{NSI} = -P_{\mu\tau}^{NSI} = -\operatorname{Re}\left(\epsilon_{\mu\tau}\right)\left(AL\right)\sin\left(\Delta_{31}L\right) + \mathcal{O}\left(\epsilon^{2}\right)$$

Brief review of the analytical dependences:

• $\epsilon_{\alpha\alpha}$ appear always in the same combination:

 $\epsilon_{ee} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{3}\right)$ $\epsilon_{\mu\mu} - \epsilon_{\tau\tau} \iff \mathcal{O}\left(\epsilon^{2}\right) \text{ only in } P_{\mu\mu}, P_{\mu\tau}$

• Up to second order, $P_{e\mu}$ and $P_{e\tau}$ only depend on $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$:

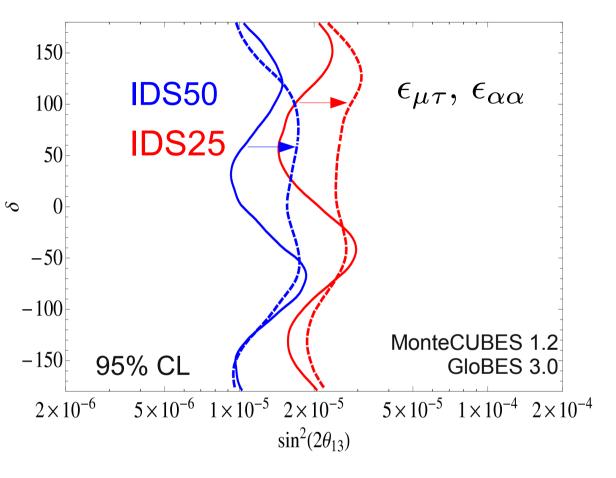
cuadratic dependence

• Linear dependence on $\epsilon_{\mu\tau}$:

$$P_{\mu\mu}^{NSI} = -P_{\mu\tau}^{NSI} = -\operatorname{Re}\left(\epsilon_{\mu\tau}\right)\left(AL\right)\sin\left(\Delta_{31}L\right) + \mathcal{O}\left(\epsilon^{2}\right)$$

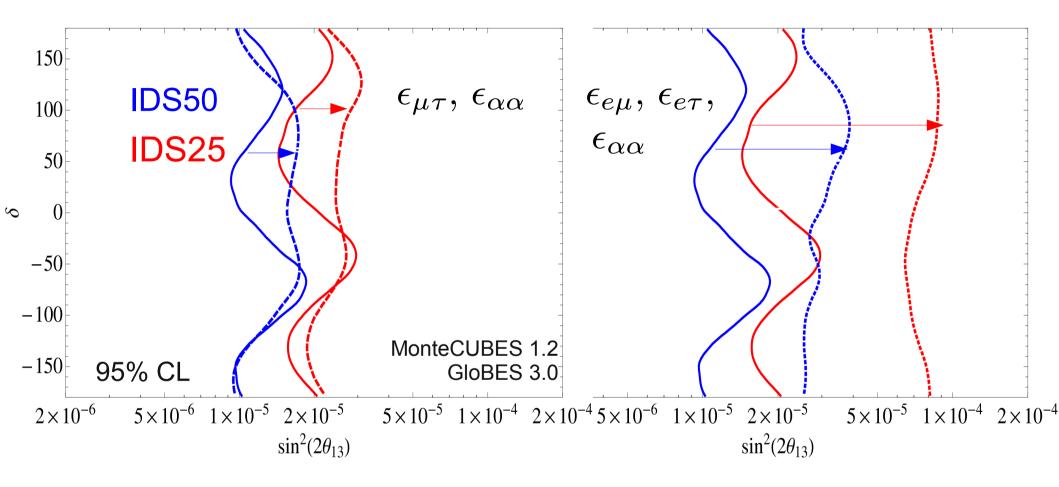
Sensitivity to θ_{13} in presence of NSI

Sensitivity to θ_{13} in presence of NSI



No correlation at all with $\epsilon_{\mu\tau}$ Slight worsening exclusively due to $\epsilon_{\alpha\alpha}$

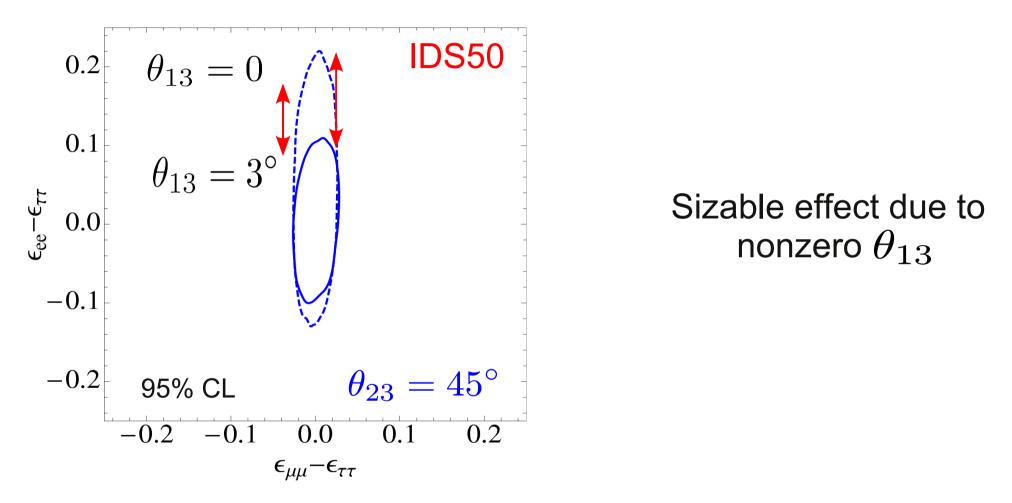
Sensitivity to θ_{13} in presence of NSI



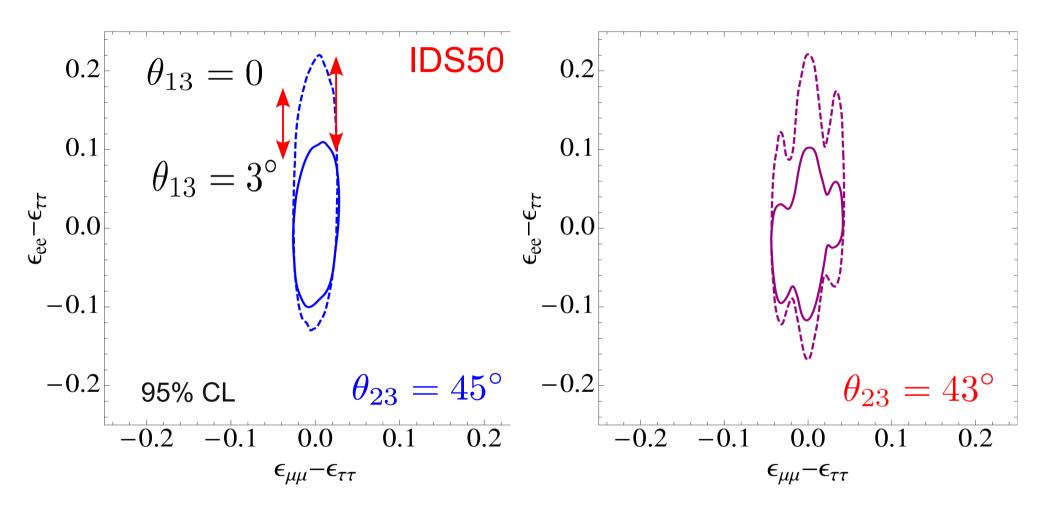
No correlation at all with $\epsilon_{\mu\tau}$ Slight worsening exclusively due to $\epsilon_{\alpha\alpha}$ Strong correlation with $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$ in Golden channel

Sensitivity to NSI parameters

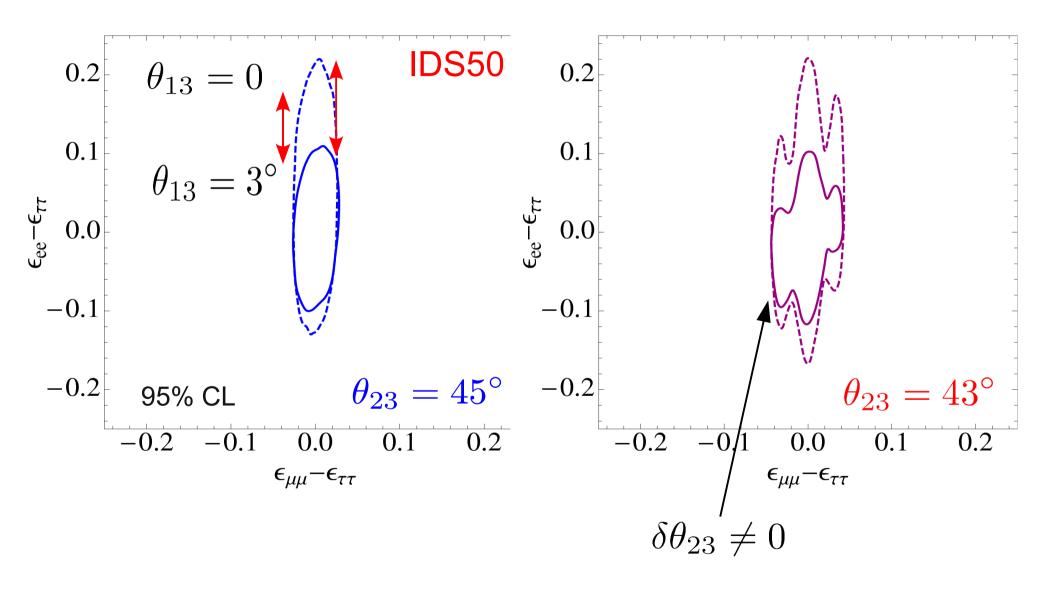
Sensitivity to $\epsilon_{\alpha\alpha}$



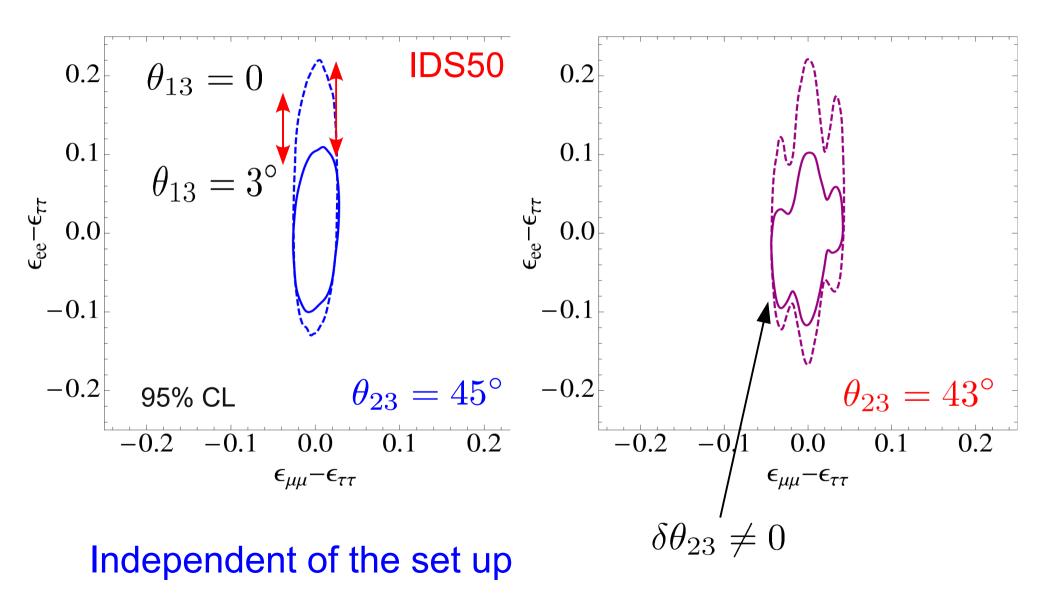
Sensitivity to $\epsilon_{\alpha\alpha}$



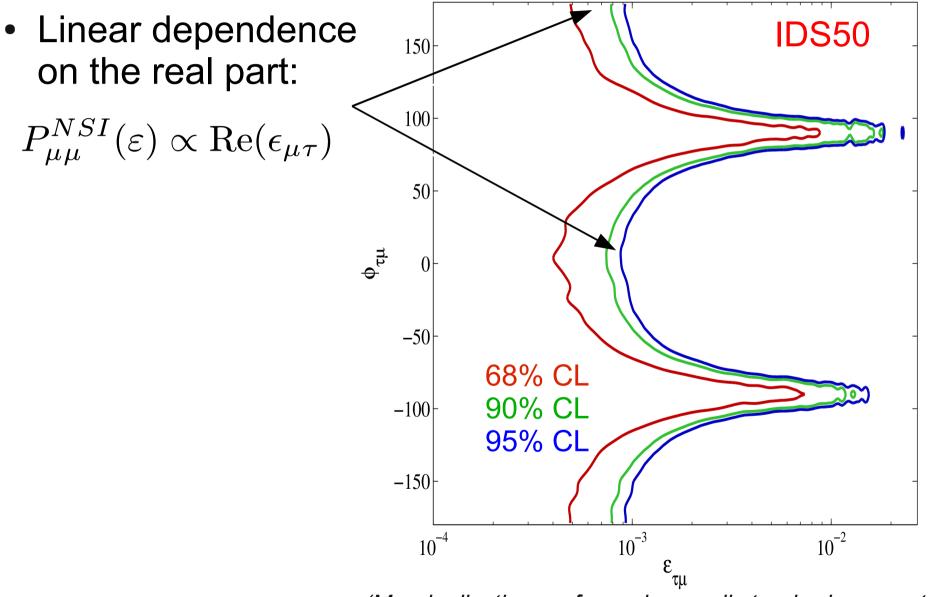
Sensitivity to $\epsilon_{\alpha\alpha}$



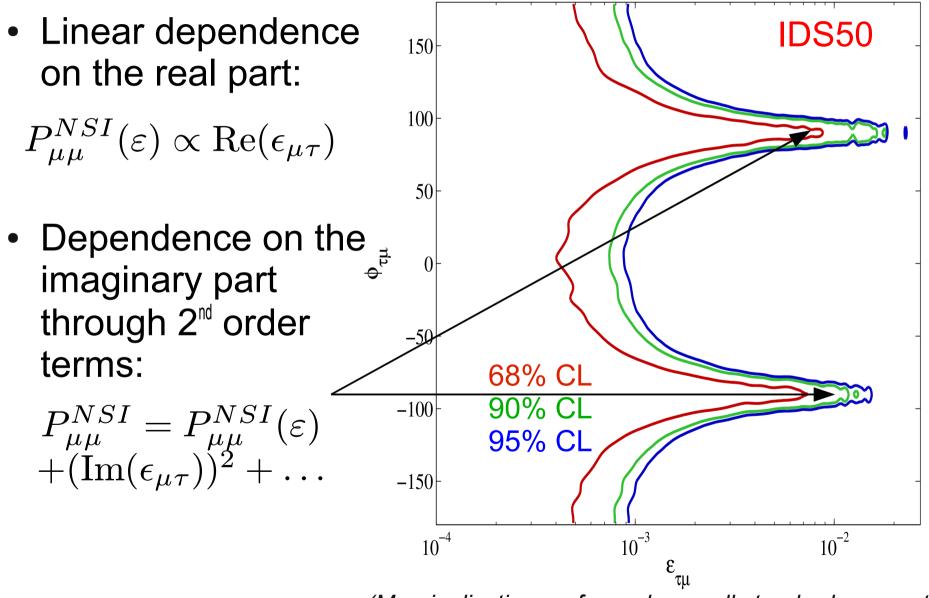
Sensitivity to $\epsilon_{\alpha\alpha}$



Sensitivity to $\epsilon_{\mu au}$

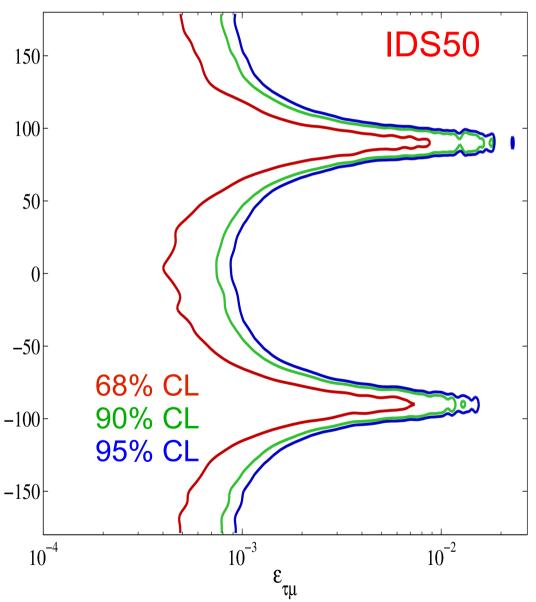


Sensitivity to $\epsilon_{\mu\tau}$

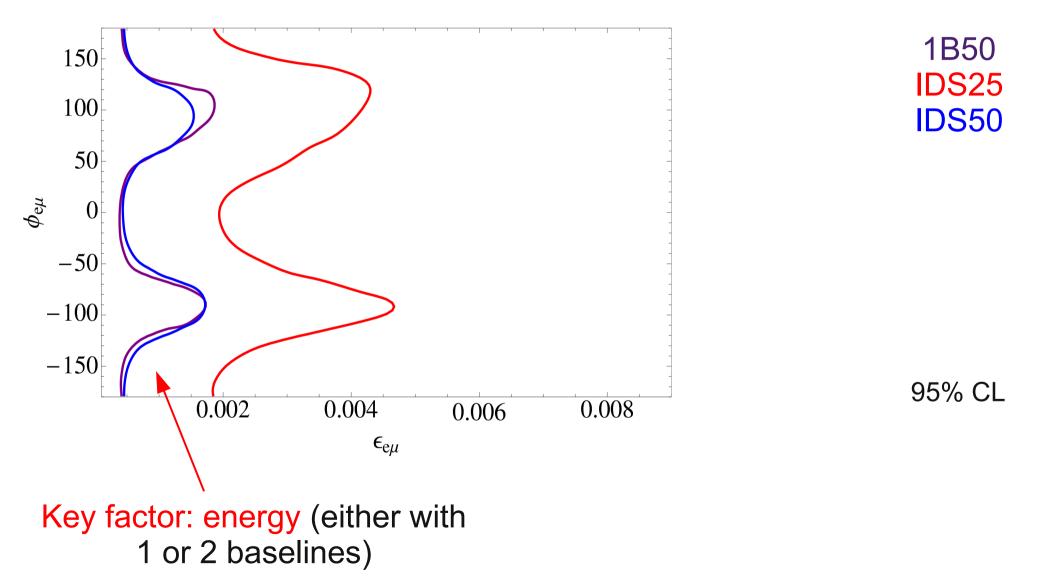


Sensitivity to $\epsilon_{\mu\tau}$

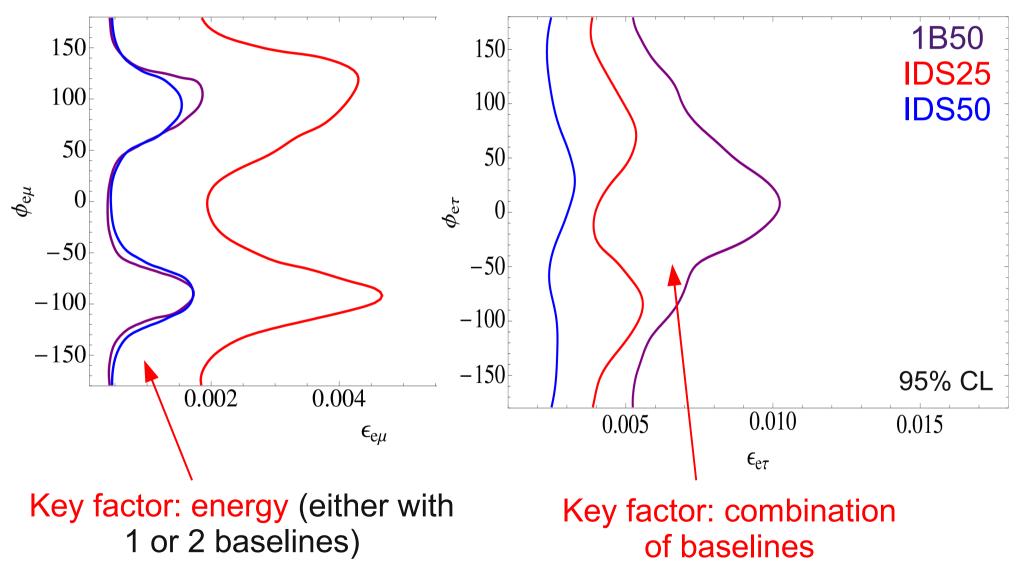
- Good news: 15 No correlation 10 with θ_{13} , $\epsilon_{\alpha\beta}$ Mild correlation 5 with $\epsilon_{\alpha\alpha}$
- Same result for all setups under study.



Sensitivity to $\epsilon_{e\mu}, \epsilon_{e au}$



Sensitivity to $\epsilon_{e\mu}, \epsilon_{e au}$



(Marginalization performed over all standard parameters)

We have studied the region of the $(\delta, \phi_{e\mu}, \phi_{e\tau})$ parameter space for which a CP-violating signal can be distinguised from a CP-conserving one.

We have studied the region of the $(\delta, \phi_{e\mu}, \phi_{e\tau})$ parameter space for which a CP-violating signal can be distinguised from a CP-conserving one.

The result depends strongly on the input values of θ_{13} , $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$. We distinguiss 2 cases:

 θ₁₃ > 3°, such that it can be tested at T2K and/or Double Chooz/Daya Bay. — We fix θ₁₃

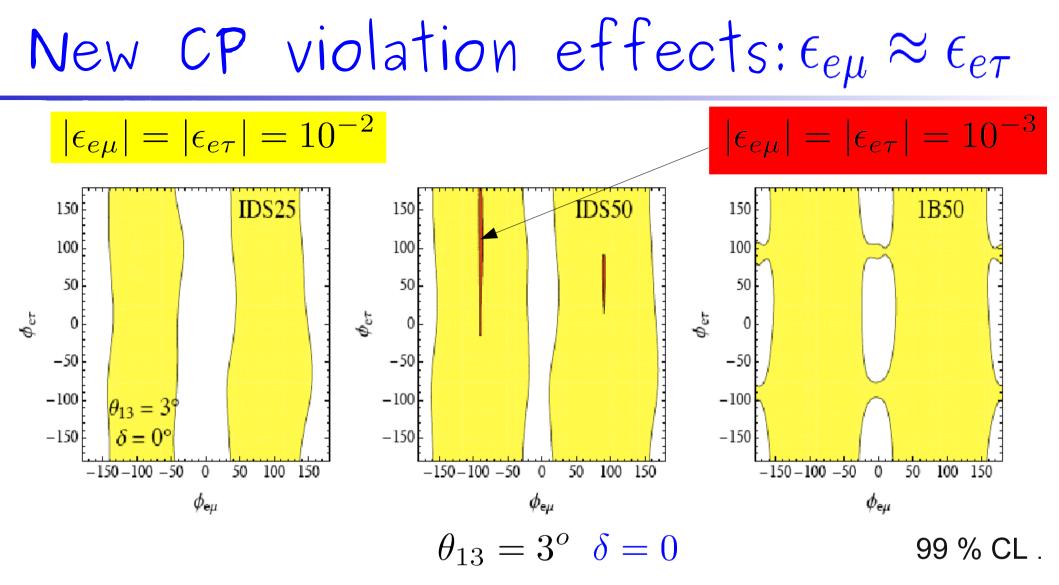
θ13 < 3°, such that it can not be tested.
 We marginalize over θ13

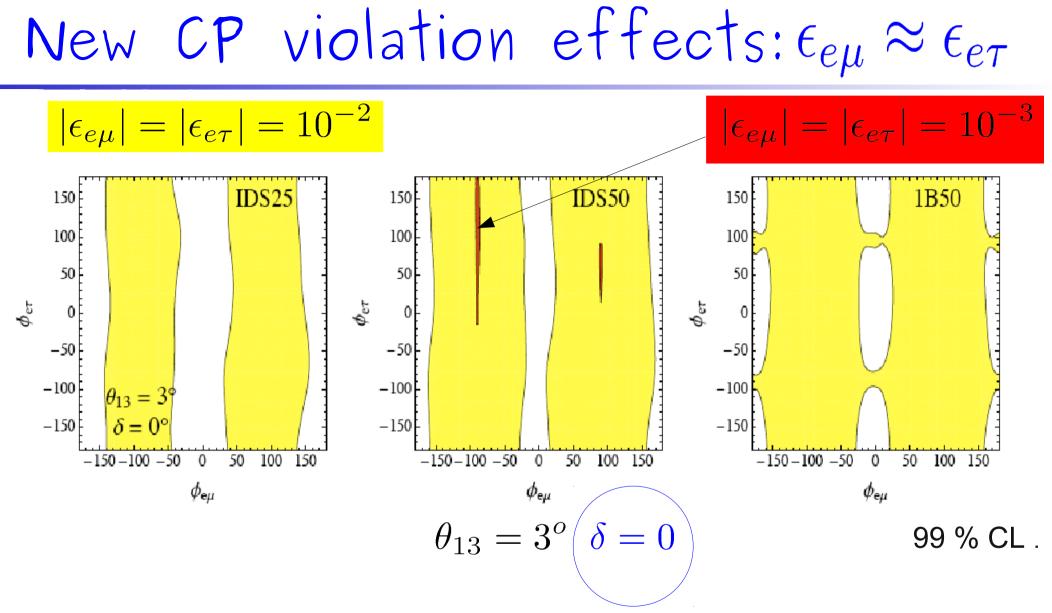
We have studied the region of the $(\delta, \phi_{e\mu}, \phi_{e\tau})$ parameter space for which a CP-violating signal can be distinguised from a CP-conserving one.

The result depends strongly on the input values of θ_{13} , $\epsilon_{e\mu}$ and $\epsilon_{e\tau}$. We distinguiss 2 cases:

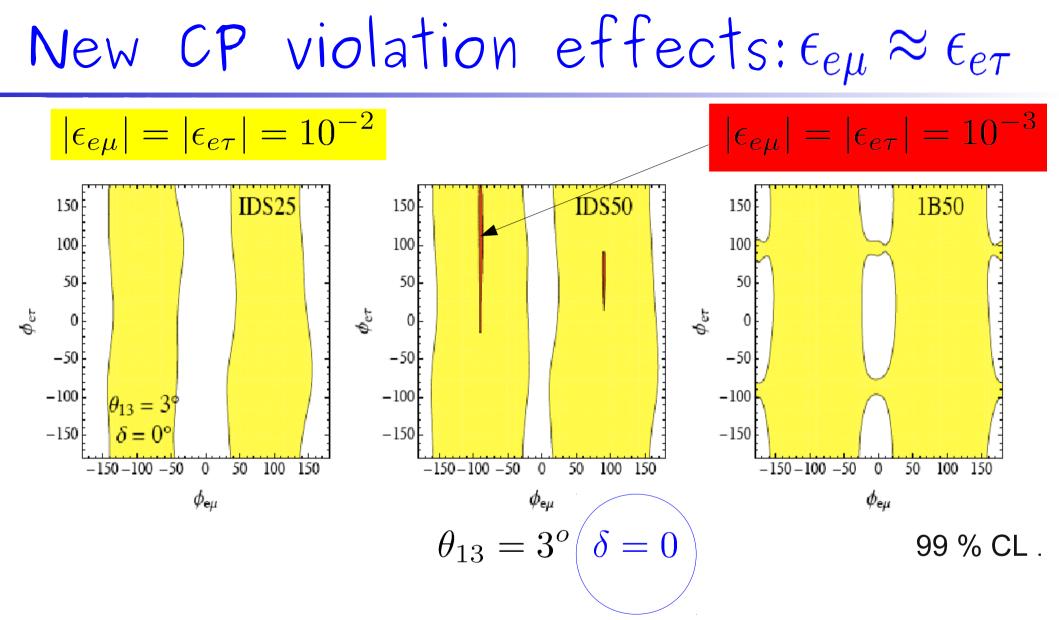
 θ₁₃ > 3°, such that it can be tested at T2K and/or Double Chooz/Daya Bay. — We fix θ₁₃

θ13 < 3°, such that it can not be tested.
 We marginalize over θ13





Pure NSI CP violation effect !



Pure NSI CP violation effect !

 $\epsilon_{e\mu}$ dominates over the rest $\epsilon_{\alpha\beta}$

vertical bands

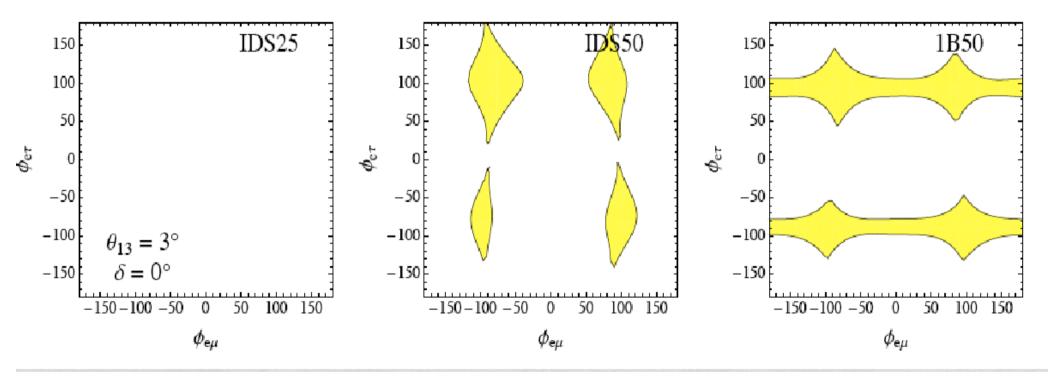
Easy to understand from oscillation probability:

$$P_{e\mu} = \left| A_{e\mu}^{SM} + \left(\frac{\epsilon_{e\mu}}{\epsilon_{e\mu}} \right) \sin\left(\frac{AL}{2}\right) e^{-i\frac{\Delta_{31}L}{2}} + \left(\frac{A}{\Delta_{31}-A}\right) \sin\left(\frac{\Delta_{31}-A}{2}L\right) \right|^{2} + \left(\frac{\epsilon_{e\tau}}{\epsilon_{e\tau}} \left[\sin\left(\frac{AL}{2}\right) e^{-i\frac{\Delta_{31}L}{2}} - \left(\frac{A}{\Delta_{31}-A}\right) \sin\left(\frac{\Delta_{31}-A}{2}L\right) \right]^{2} \right|^{2}$$

partial cancelation

New CP violation effects:
$$\epsilon_{e\mu} \ll \epsilon_{e\tau}$$

 $|\epsilon_{e\mu}| = 10^{-3} |\epsilon_{e\tau}| = 10^{-2}$ The NSI parameters are competitive

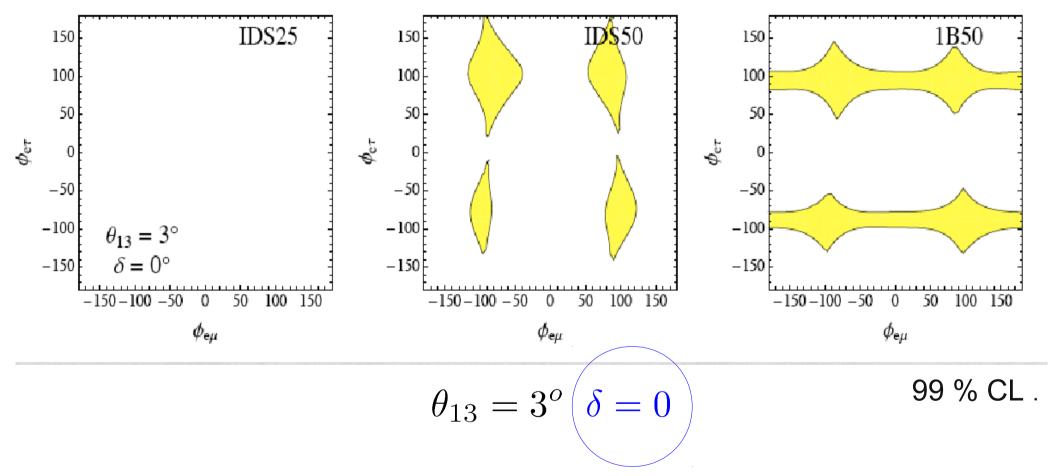


 $\theta_{13} = 3^o \ \delta = 0$

99 % CL .

New CP violation effects: $\epsilon_{e\mu} \ll \epsilon_{e\tau}$

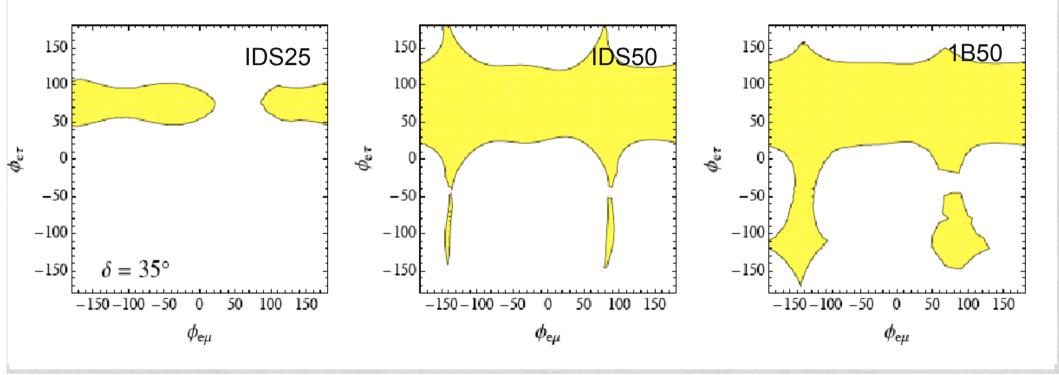
 $|\epsilon_{e\mu}| = 10^{-3} |\epsilon_{e\tau}| = 10^{-2}$ The NSI parameters are competitive



Pure NSI CP violation effect !

New CP violation effects: $\epsilon_{e\mu} \ll \epsilon_{e\tau}$

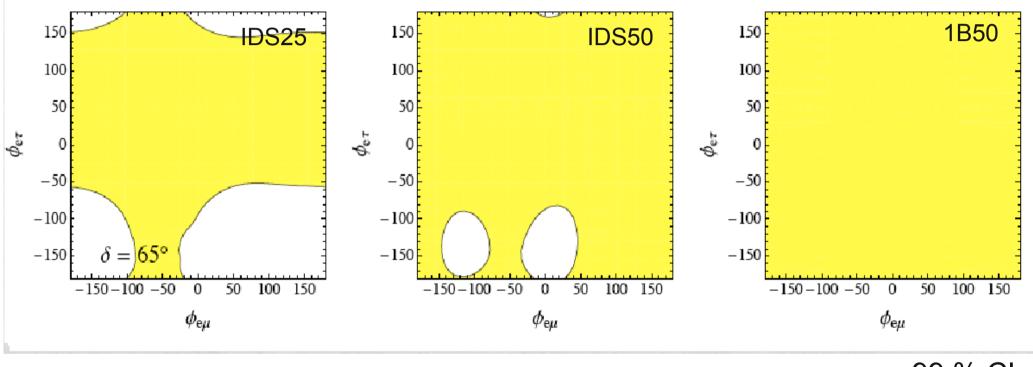
$|\epsilon_{e\mu}| = 10^{-3} |\epsilon_{e\tau}| = 10^{-2}$



 $\theta_{13} = 3^o \ \delta = 35$ 99 % CL

The 3 CP-phases play the game

New CP violation effects: $\epsilon_{e\mu} \ll \epsilon_{e\tau}$



 $\theta_{13} = 3^o \ \delta = 65$ 99 % CL

Standard CP violation effect dominates over NSI effects

Conclusions

- NSI affect θ_{13} sensitivity:
 - Strong correlation with $\epsilon_{e\mu}, \epsilon_{e\tau}$.
 - No correlation with $\epsilon_{\mu\tau}$ and (almost) $\epsilon_{\alpha\alpha}$;
- Sensitivity to diagonal NSI parameters:
 - Sizable effects due to $\delta\theta_{23} \neq 0, \theta_{13} \neq 0;$
 - No correlation with non diagonal parameters
 - $(\epsilon_{ee} \epsilon_{\tau\tau}) < 10^{-1}$ (limitated by matter uncertany)
 - $(\epsilon_{\mu\mu} \epsilon_{\tau\tau}). < \mathcal{O}(10^{-2})$
- Sensitivity to off-diagonal NSI parameters:
 - $\epsilon_{e\mu}$: higher energies are the key
 - $\epsilon_{e\tau}$: the MB is the key (stronger correlations)

 $\mathcal{O}(10^{-3})$

• $\epsilon_{\mu\tau} < 10^{-3} - 10^{-2}$ Independent of the set up.

- CP violation:
 - CP violation exclusively due to NSI could be measured for reasonable input values of the NSI parameters. Even for $\theta_{13}=0$

- $\epsilon_{e\mu} \approx \epsilon_{e\tau}$. $\epsilon_{e\mu}$ dominates, correlations only between $\delta, \phi_{e\mu}$
- $\epsilon_{e\mu} \ll \epsilon_{e\tau}$. More complex behaviour, involved correlations among 3 CP phases: $\delta, \phi_{e\mu}, \phi_{e\tau}$
- In general higher energies set ups perform better.

Thank you!

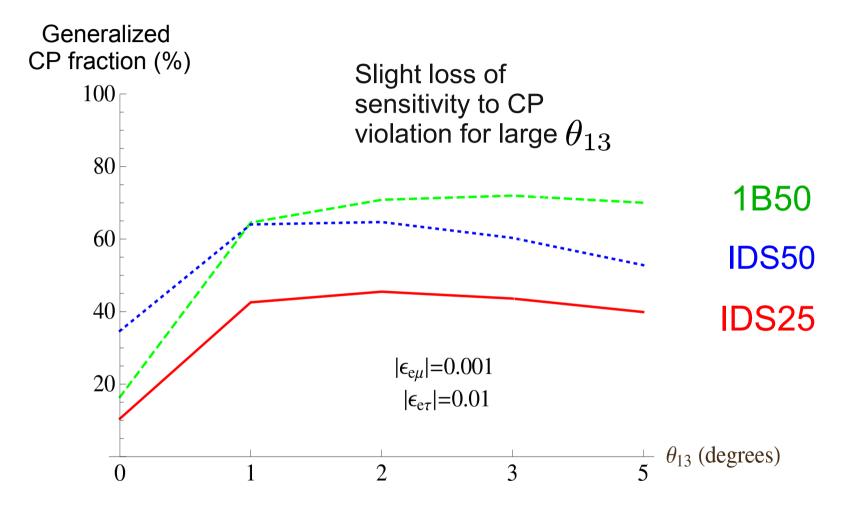
Back-up

- We have measured the 3D CP discovery potential: the region of the (δ,φ_{eµ},φ_{eτ}) parameter space for which a CP-violating signal can be distinguished from a CP-conserving one
 - This corresponds to check if, given the input triple $(\delta, \phi_{e\mu}, \phi_{e\tau})$, the χ^2 at the CP-conserving points $\{(0,0,0), (0,0,\pi), (0,\pi,0), (\pi,0,0), (0,\pi,\pi), (\pi,0,\pi), (\pi,\pi,0), (\pi,\pi,\pi)\}$ is larger than a given (3dof's) CL

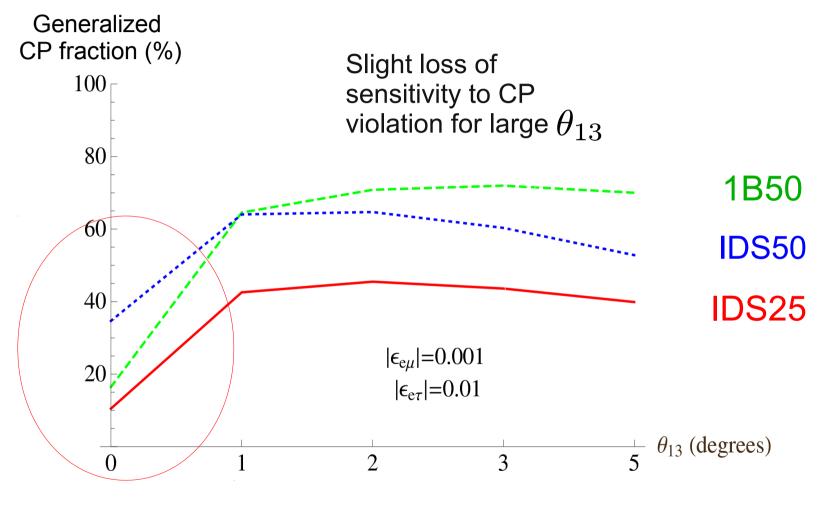
 $\chi^{2}_{CPC}(\theta_{13},\bar{\theta}_{13};\{\bar{\phi}\}) = \min_{\{\phi\}_{CPC}} \left(\chi^{2}(\theta_{13},\bar{\theta}_{13};\{\phi\}_{CPC},\{\bar{\phi}\}) \right)$

W.Winter, Phys. Lett. B671 (2009) 77, arXiv:0808.3583

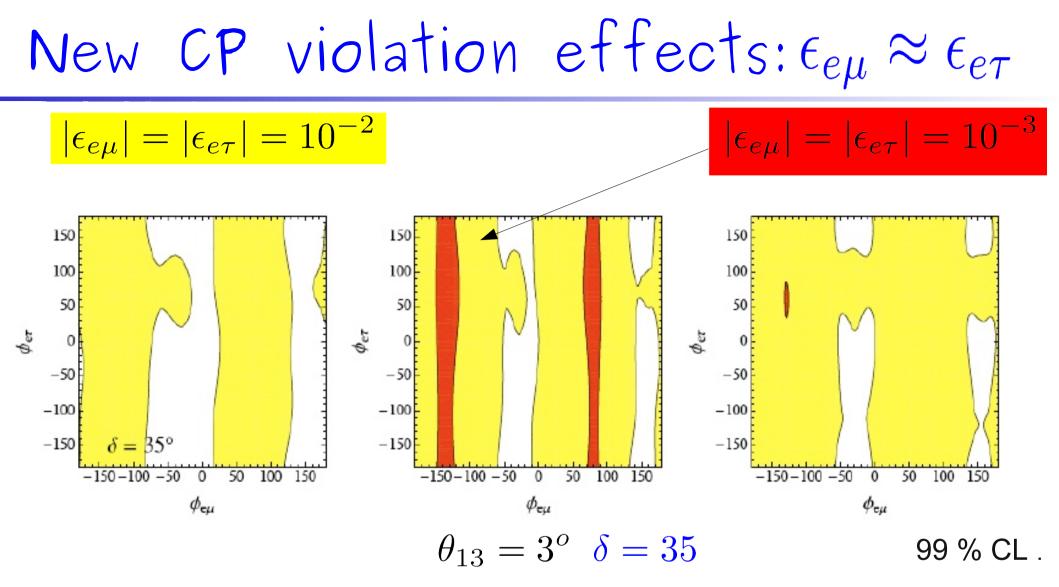
Generalized CP-fraction



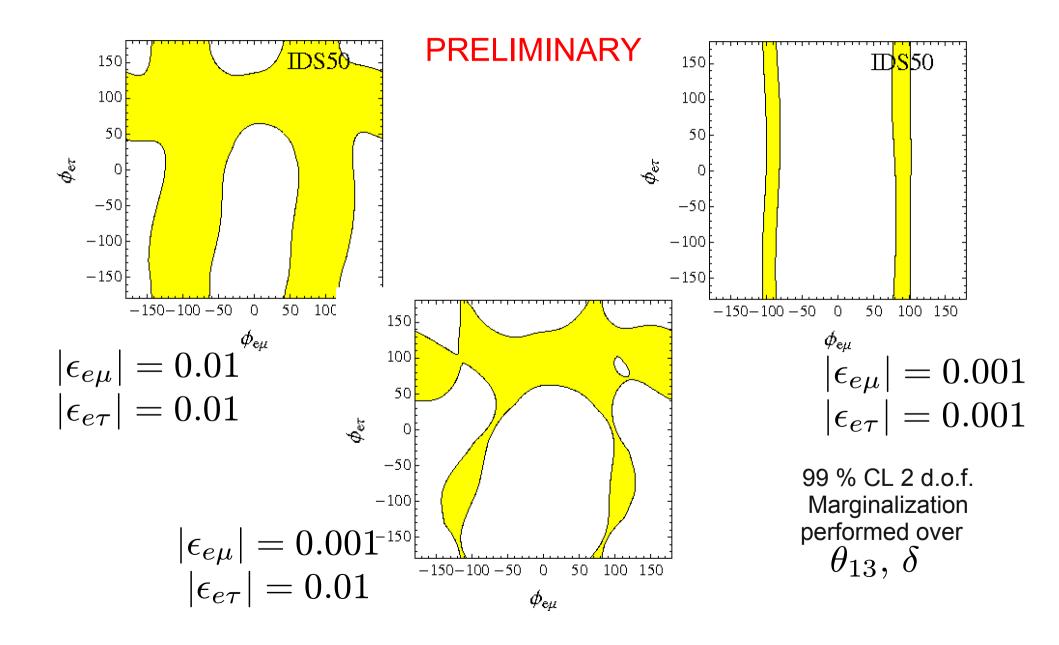
Generalized CP-fraction



Non-zero CP fraction for vanishing θ_{13} !



New CP violation effects: $\theta_{13} = 0$



Oscillation Probabilities

$$P_{\mu\mu}^{NSI} = -P_{\mu\tau}^{NSI} = -\left\{\operatorname{Re}\left(\epsilon_{\mu\tau}\right)\right\} (AL) \sin\left(\Delta_{31}L\right) - \delta\theta_{23} \left(\epsilon_{\mu\mu} - \epsilon_{\tau\tau}\right) \left[(AL) \sin\left(\Delta_{31}L\right) - 4\frac{A}{\Delta_{31}} \sin^2 \frac{\Delta_{31}L}{2} \right] + \left(\epsilon_{\mu\mu} - \epsilon_{\tau\tau}\right)^2 \left(\frac{A}{\Delta_{31}}\right)^2 \sin^2 \frac{\Delta_{31}L}{2} - \frac{1}{2} \left(\operatorname{Re}(\epsilon_{\mu\tau})\right)^2 (AL)^2 \cos\left(\Delta_{31}L\right) - \left(\operatorname{Im}(\epsilon_{\mu\tau})\right)^2 \frac{A}{\Delta_{31}} (AL) \sin\left(\Delta_{31}L\right) . + \mathcal{O}(\epsilon_{e\mu}^2) + \mathcal{O}(\epsilon_{e\mu}^2) + \mathcal{O}(\epsilon_{e\mu,\tau}\theta_{13}) + \dots$$