A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector

P. Coloma^{a,b}, A. Donini^{b,c}, P. Migliozzi^d, L. Scotto Lavina^e, F. Terranova^f

Based on the paper arXiv:1004.3773v2 [hep-ph] submitted and accepted by EPJC ^a Dep. Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain ^b I.F.T., Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain ^c I.F.I.C., Universitat de Valencia/CSIC, 46071 Valencia, Spain ^d I.N.F.N., Sezione di Napoli, Napoli, Italy ^e LHEP, University of Bern, CH-3012 Bern, Switzerland ^f I.N.F.N., Laboratori Nazionali di Frascati, Frascati (Rome), Italy

 $\sigma_{CC}^{QE}/\sigma_{CC}(E_{v})$

We consider a Beta Beam setup that tries to leverage at most existing European facilities: i.e. a setup that takes advantage of facilities at CERN to boost high-Q ions (⁸Li and ⁸B) aiming at a far detector located at L = 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy for ⁸Li and ⁸B ions boosted at $\gamma \sim 100$ is in the range E₀ \in [1, 2] GeV, high enough to use a large iron detector of the MINOS type at the far site. We perform, then, a study of the neutrino and antineutrino fluxes needed to measure a CP-violating phase δ in a significant part of the parameter space. In particular, for $\theta_{13} \ge 3^{\circ}$, if an antineutrino flux of 3×10^{19} useful ⁸Li decays per year is achievable, we find that δ can be measured in 60% of the parameter space with 3 × 10¹⁸ useful ⁸B decays per year.

The high-Q beta beam option

A configuration exploiting at most existing facilities Isotopes with higher Q like ⁸Li (\overline{v}) and ⁸B (v) and γ = 100

