Reconstruction of GeV neutrino events in LENA

Randolph Möllenberg

Physik Department Technische Universität München

24.10.10

4 B 6 4 B

- 2 Reconstruction of Particle Tracks in Liquid Scintillators
- 3 Reconstruction of Neutrino Events in LENA
 - Low Energy (0.2 GeV-1 GeV)
 - High Energy (1 GeV-5 GeV)

4 Conclusion

Introduction

Reconstruction of Particle Tracks in Liquid Scintillators Reconstruction of Neutrino Events in LENA Conclusion

Randolph Möllenberg Reconstruction of GeV neutrino events in LENA

< ロ > < 同 > < 回 > < 回 > < □ > <

3

Introduction

Reconstruction of Particle Tracks in Liquid Scintillators Reconstruction of Neutrino Events in LENA Conclusion

Physics Goals

Low-energy physics

- Solar Neutrinos
- Galatic Supernova Neutrinos
- Diffuse Supernova Neutrinos
- Geoneutrinos

GeV physics

- Proton Decay
- Atmospheric Neutrinos
- Neutrino Beams

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Reconstruction of Particle Tracks in Liquid Scintillators Reconstruction of Neutrino Events in LENA Conclusion

Possible Detector Locations

Frejus (France)

- 4800 m.w.e. shielding
- 130 km distance to CERN
- Energy of the 1st Osc. Max. is 0.26 GeV

Pyhäsalmi (Finland)

- 4000 m.w.e. shielding
- 2300 km distance to CERN
- Energy of the 1st Osc. Max. is 4.65 GeV

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• The light emission is isotropic in a liquid scintillator

₩

- No directional information for point like events
- For track lengths greater than $\sim 10 \text{ cm}$ it is possible to reconstruct the track from the superposition of the spherical light waves along the track

Reconstruction of Muon Tracks in Borexino

Randolph Möllenberg Reconstruction of GeV neutrino events in LENA

Image: A = A

Reconstruction of CNGS Neutrinos in Borexino

Randolph Möllenberg Reconstruction of GeV neutrino events in LENA

• Quasi-elastic scattering is the dominant channel

• Easy reconstruction of the neutrino event from the lepton track

1

- ν_{μ} and ν_{e} can be discriminated by the muon decay and the different typical pulse shapes
- Background from NC events and resonance/deep-inelastic CC events

伺 ト イ ヨ ト イ ヨ ト

Low Energy (0.2 GeV-1 GeV) High Energy (1 GeV-5 GeV)

Basic Track Fitting Principle

6

- $P\left(\overrightarrow{p}, \overrightarrow{S}\right)$: PDF that an event with parameters \overrightarrow{p} has the signal \overrightarrow{S}
- Minimize $\mathcal{L} = -\ln\left(P\left(\overrightarrow{p}, \overrightarrow{S}\right)\right) \Rightarrow \text{most probable } \overrightarrow{p}$
- Assume all PMTs to be independent and equal

$$\Rightarrow \mathcal{L} = -\sum_{i=1}^{N_{PMT}} \ln \left[P_s \left(\overrightarrow{p}, \overrightarrow{S_i}, \overrightarrow{r_i}, \overrightarrow{n_i} \right) \right]$$

• Calculate $P_s \left(\overrightarrow{p}, \overrightarrow{S_i}, \overrightarrow{r_i}, \overrightarrow{n_i} \right)$

Low Energy (0.2 GeV-1 GeV) High Energy (1 GeV-5 GeV)

Result of the Energy Fit

500 MeV μ^- , origin: center of LENA (0,0,0), direction perpendicular to the symmetry axis of the cylinder

Low Energy (0.2 GeV-1 GeV) High Energy (1 GeV-5 GeV)

Result of the Track Fit

500 MeV μ^- , origin: center of LENA (0,0,0), direction perpendicular to the symmetry axis of the cylinder

A P

Low Energy (0.2 GeV-1 GeV)

Result of the Track Fit

500 MeV μ^- , origin: center of LENA (0,0,0), direction perpendicular to the symmetry axis of the cylinder

• Contribution of resonance pion production and deep-inelastic (DIS) events not negligible

₩

- Multiple tracks need to be reconstructed in one event
- Energy resolution limited by the non-linear relation between neutrino energy and detected light, caused by nuclear effects, quenching of scintillation light and track position uncertainty

伺 ト イ ヨ ト イ ヨ ト

Low Energy (0.2 GeV-1 GeV) High Energy (1 GeV-5 GeV)

Reconstruction of a 4 GeV DIS ν_{μ} event

- blue: muon track
- cyan: proton/pion track
- green: gamma track
- red: rec. muon track
- yellow: rec. gamma track
- pink: rec. proton/pion track
- DIS event with a muon (2.0 GeV), proton (0.14 GeV) and 3 pions (0.61 GeV,0.35 GeV,0.32 GeV) in the final state
- \bullet Reconstructed lepton energy error 5%
- Reconstructed vertex position error 0.11 m

Low Energy (0.2 GeV-1 GeV) High Energy (1 GeV-5 GeV)

Results

- 3% photocoverage is sufficient for all high-energy events
- $\bullet\,\sim3\,\text{ns}$ time resolution of the photosensors is necessary
- Pulse shape of every read out channel needs to be recorded
- Good positional and angular accuracy ($\sim 10\,{
 m cm}$, few degrees)
- 1-2 tracks in one event can always be reconstructed
- 3 tracks in one event can only be reconstructed if they are clearly separated and long enough ($\sim 1\,m)$
- Energy resolution 1% to 5% dependant on the event type
- Lepton flavour indentification better than 99%

- 4 周 ト 4 戸 ト 4 戸 ト

- Two possible baselines for LENA, 130 km (CERN-Frejus) and 2300 km (CERN-Pyhäsalmi)
- Single particle tracks can be reconstructed precisely at low energies (0.2 GeV-1 GeV)
- At high energies (1 GeV-5 GeV) up to 3 tracks in one event can be reconstructed
- Good lepton energy resolution at low energies (0.5%)
- Good neutrino energy resolution at high energies (1% to 5%)
- Good lepton flavour identification at low and high energies
- Background from NC events, needs to be analyzed in future Monte-Carlo studies

(4月) イヨト イヨト