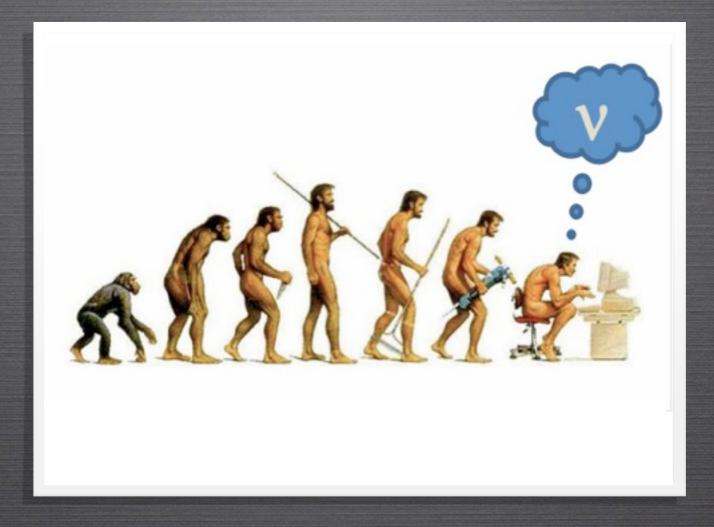
NEUTRAL CURRENT RESONANT PION PRODUCTION ~EXPERIMENTAL RESULTS~


Hide-Kazu TANAKA BNL

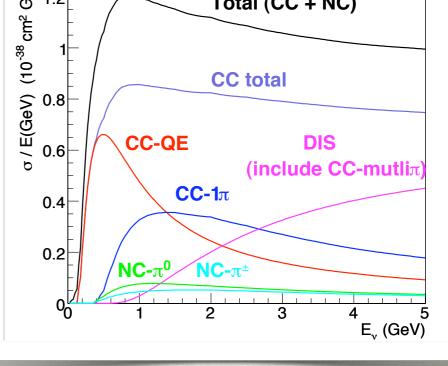
NuFact2010 at Mumbai, October 24, 2010

CONTENTS

- Introduction
- Past results
- Recent results
 - K2K-1KT, MiniBooNE, SciBooNE
- Future prospect
- Summary

INTRODUCTION

$\begin{array}{c} \textbf{NEUTRAL} \quad \textbf{CURRENT} \\ \textbf{RESONANT} \quad \pi \quad \textbf{PRODUCTION} \end{array}$

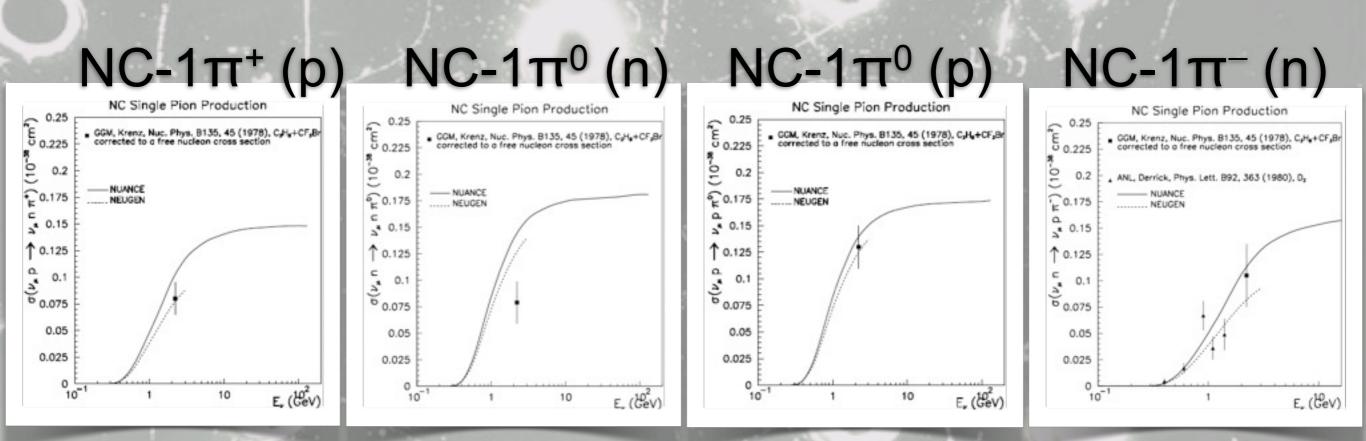

- Among several resonances, Δ(1232) resonance is the main contribution to the "resonant pion production".
- Δ(1232) decays to single pion final state. In neutral current mode, four possible processes:

MEASUREMENT OF NC PION PRODUCTION

- In experiments, extracting resonant pion production cross section is non-trivial because of Bkg contributions:
 - Non-resonant processes: DIS, coherent-π
 - Nuclear effect: absorption, inelastic, charge exchange (mimic resonant-π event)
- $\sigma(NC \text{ res-}\pi)$ extraction depends on modeling of the background processes
 - \rightarrow Experimental observable: $\sigma(NC-1\pi)$
 - NC-1 $\pi \equiv$ NC event with a pion exiting target nucleus
 - all the FSI effects included (e.g. Multi- π /DIS can be part of signal events)
 - NC-1π cross section often more important to modern-day neutrino oscillation experiment (later slide)

ON NEUT prediction v_{μ} cross-sections implemented in NEUT $f_{\mu} = \int_{0}^{1} \int_{0}^{1}$

PAST NC-1 π Measurements


- Several measurements in past
 - Most of results in the form of cross section ratio, e.g. ratio to CC-1 π
 - Few results in form of absolute cross section

Source	Target	NC/CC Ratio	Value
ANL	H_2	$\sigma(\nu_{\mu} p \to \nu_{\mu} p \pi^{0}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	$0.51\pm0.25^*$
ANL	H_2	$\sigma(u_{\mu} p ightarrow u_{\mu} p \pi^{0}) / \sigma(u_{\mu} p ightarrow \mu^{-} p \pi^{+})$	$0.09\pm0.05^*$
NUANCE	free nucleon	$\sigma(\nu_{\mu} p \to \nu_{\mu} p \pi^{0}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.20
ANL	H_2	$\sigma(\nu_{\mu} p \to \nu_{\mu} n \pi^{+}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.17 ± 0.08
ANL	H_2	$\sigma(\nu_{\mu} p \to \nu_{\mu} n \pi^{+}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.12 ± 0.04
NUANCE	free nucleon	$\sigma(\nu_{\mu} p \to \nu_{\mu} n \pi^{+}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.17
ANL	D_2	$\sigma(\nu_{\mu} n \to \nu_{\mu} p \pi^{-}) / \sigma(\nu_{\mu} n \to \mu^{-} n \pi^{+})$	0.38 ± 0.11
NUANCE	free nucleon	$\sigma(\nu_{\mu} n \to \nu_{\mu} p \pi^{-}) / \sigma(\nu_{\mu} n \to \mu^{-} n \pi^{+})$	0.27
Gargamelle	$C_3H_8 \ CF_3Br$	$\sum_{N=n,p} \sigma(\nu_{\mu} N \to \nu_{\mu} N \pi^{0})/2 \sigma(\nu_{\mu} n \to \mu^{-} p \pi^{0})$	0.45 ± 0.08
CERN PS	Al	$\sum_{N=n,p} \sigma(\nu_{\mu} N \to \nu_{\mu} N \pi^{0})/2 \sigma(\nu_{\mu} n \to \mu^{-} p \pi^{0})$	0.40 ± 0.06
BNL	Al	$\Sigma_{N=n,p} \sigma(\nu_{\mu} N \to \nu_{\mu} N \pi^{0})/2 \sigma(\nu_{\mu} n \to \mu^{-} p \pi^{0})$	$0.17 \pm 0.04^{**}$
BNL	Al	$\Sigma_{N=n,p} \sigma(\nu_{\mu} N \to \nu_{\mu} N \pi^{0})/2 \sigma(\nu_{\mu} n \to \mu^{-} p \pi^{0})$	$0.248 \pm 0.085^{**}$
NUANCE	free nucleon	$\Sigma_{N=n,p} \sigma(\nu_{\mu} N \to \nu_{\mu} N \pi^{0})/2 \sigma(\nu_{\mu} n \to \mu^{-} p \pi^{0})$	0.41
ANL	D_2	$\sigma(\nu_{\mu} n \to \nu_{\mu} p \pi^{-}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.11 ± 0.022
NUANCE	free nucleon	$\sigma(\nu_{\mu} n \to \nu_{\mu} p \pi^{-}) / \sigma(\nu_{\mu} p \to \mu^{-} p \pi^{+})$	0.19

Table and figures form G. Zeller, hep-ex/0312061

PAST NC-1 π Measurements

- Several measurements in past
 - Most of results in the form of cross section ratio, e.g. ratio to CC-1 π
 - Few results in form of absolute cross section

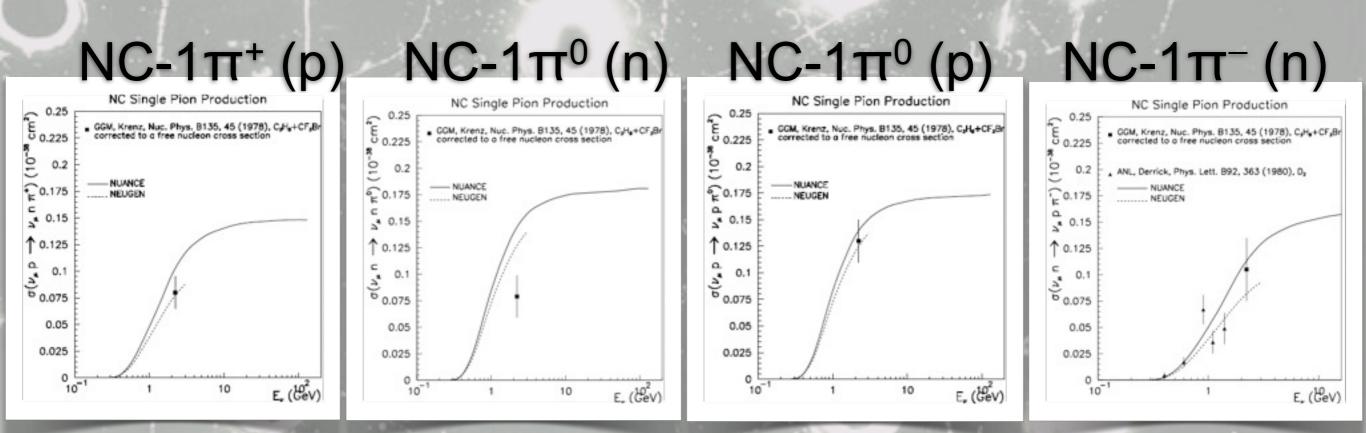


Table and figures form G. Zeller, hep-ex/0312061

6

PAST NC-1π MEASUREMENTS

- Several measurements in past
 - Most of results in the form of cross section ratio, e.g. ratio to CC-1 π
 - Few results in form of absolute cross section

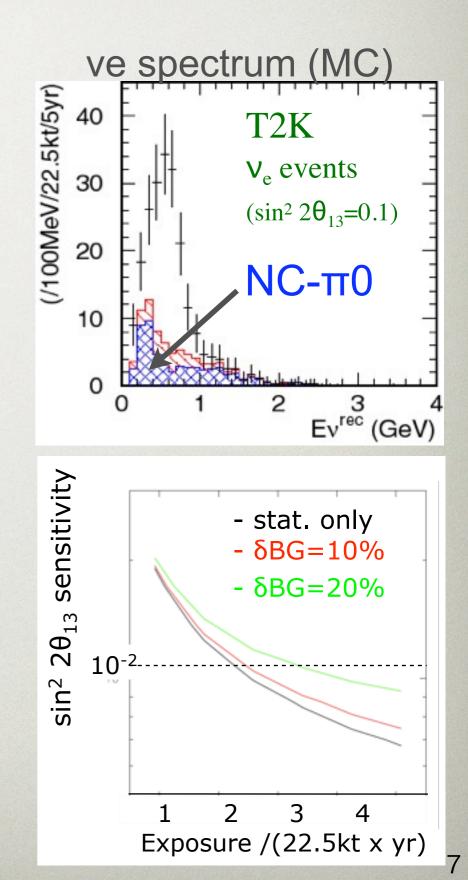
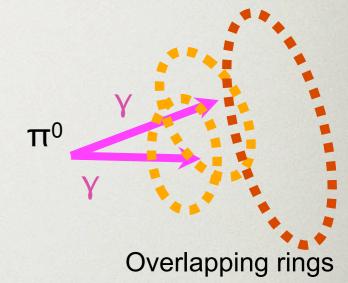
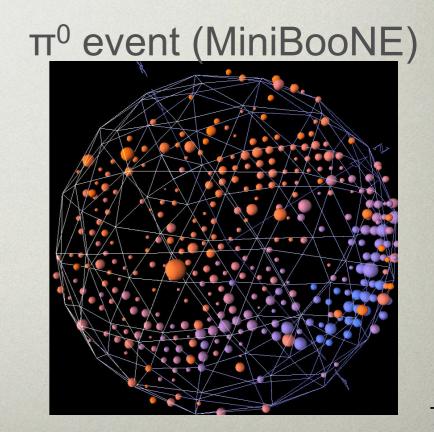

NC-1 π cross sections are extremely sparse, compared to CC-1 π modes.

Table and figures form G. Zeller, hep-ex/0312061

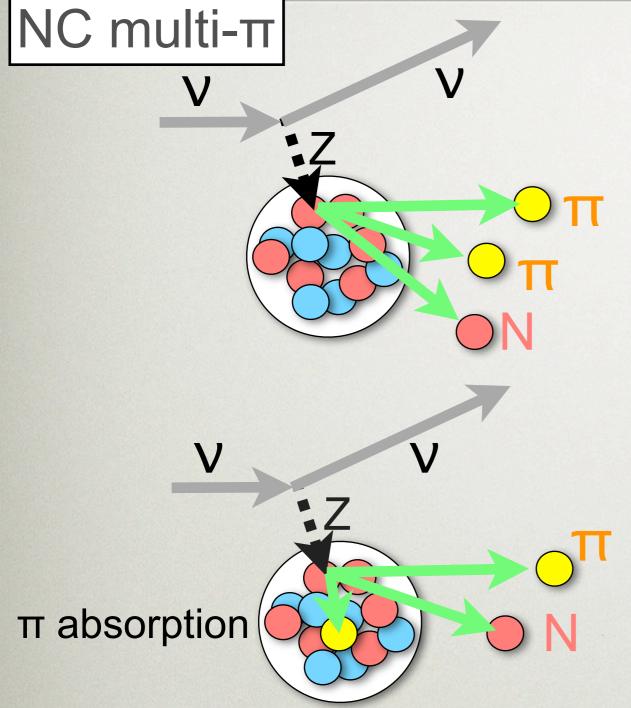
6

NEED NC-1 π measurement?


- Neutrino oscillation experiments need precise knowledge on NC-1 π^0
- NC-1 π^0 is the major background for $v_{\mu} \rightarrow v_e$ oscillation search
 - Gamma-rays (from π⁰) mimic electron signal in Cherenkov detector, e.g. overlapping two rings
- $\Rightarrow \pi^0$ kinematics is also important to determine misidentification rate in v_e search as well as cross section.



NEED NC-1 π measurement?


- Neutrino oscillation experiments need precise knowledge on NC-1π⁰
- NC-1 π^0 is the major background for $v_{\mu} \rightarrow v_e$ oscillation search
 - Gamma-rays (from π⁰) mimic electron signal in Cherenkov detector, e.g. overlapping two rings
- → π⁰ kinematics is also important to determine misidentification rate in v_e search as well as cross section.

Two rings merged to 1 ring in Cherenkov detector

CHALLENGE

 π is often absorbed in target nucleus \rightarrow NC multi- π events indistinguishable from NC-1 π .

- Nuclear target
 - Oscillation experiment use nuclear target (C, O, Fe, Ar)
 - → "Nuclear effect"
 - Final state interaction
 - Modify kinematics/charge of final state particles (π, p)
 - Vanish particles (absorption)
 - e.g. ~40% of π⁰s interact in the target nucleus (NEUT, Carbon target, average over SciBooNE flux (Ev~0.7GeV))
 - Nuclear effect is not well
 modeled yet
 - Important to understand v int. with nuclear effect

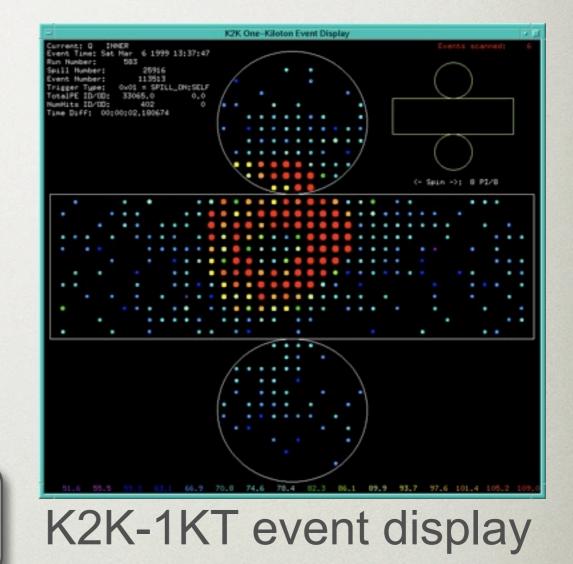
RECENT MEASUREMENTS

RECENT MEASUREMENT

Four recent measurements of NCπ0:

Exp	Mode	Target	$\sqrt{\nabla}$	Ev (GeV)	Publication
K2K-1KT	NC-1π0	H_2O	ν	1.3	PLB619, 255 (2005)
MiniBooNE	NC-1π0	CH ₂	ν and $\bar{\nu}$	0.8(∨) 0.7(⊽)	PRD81, 013005 (2010)
SciBooNE	NC-π0	CH	V	0.8	PRD81, 033004 (2010)

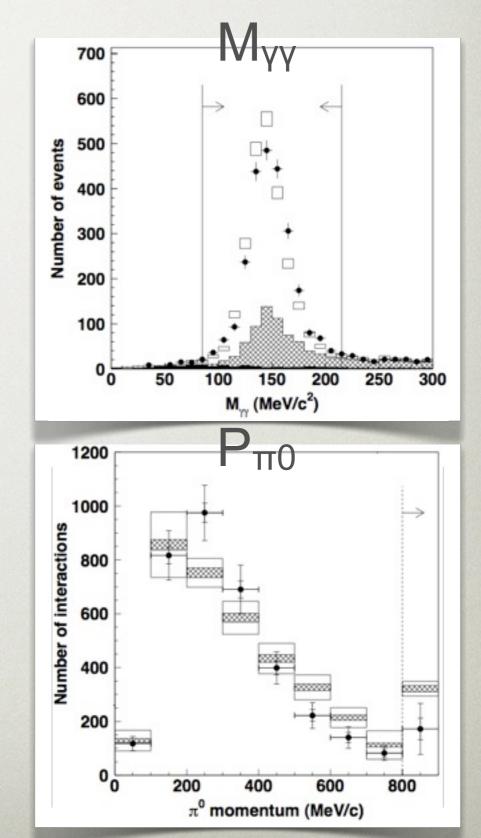
Note: NC coh- π measurements are not included in the list. See H. Tanaka (my) talk for coh- π measurements.


MEASURING CROSS SECTIONS

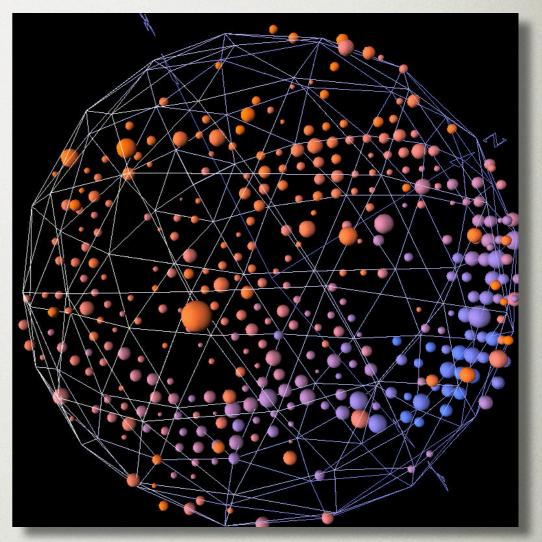
- Measured quantity:
 - Cross section ratio: many systematics are canceled, especially beam related.
 - Absolute cross section: require good understanding of flux and control of flux uncertainties.
- Signal definition
 - Slightly different definition in each experiment:
 - NC-1 $\pi^0 \equiv$ NC int. resulting in one π^0 exiting the target nucleus & no other mesons
 - NC- $\pi^0 \equiv$ NC int. in which at least one π^0 in the final state

K2K-1KT $\sigma(NC-1\pi^{o})/\sigma(CC)$

- Water Cherenkov detector
- Signal definition: NC-1π⁰
- 1st meas. of NC-1 π^0 in H₂O
- Identify event using hit topology
 - Two e-like rings
- NC-1π⁰ purity: 71%
 - Resonant: 52%
 - Coherent: 10%
 - DIS: 4%, FSI(CC/NC-1π[±]): 3%
 - $\sigma(NC-1\pi^0) / \sigma(CC) = (6.4\pm0.1\pm0.7)\%$ <Ev>=1.3 GeV
 - In agreement with expectation (NEUT, R-S): 6.5%
- Momentum distribution disagrees


Phys. Lett. B619, 255 (2005)

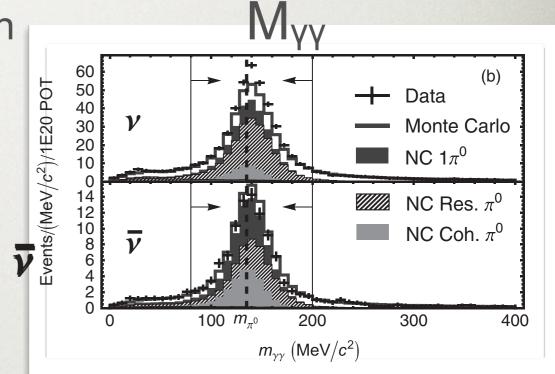
K2K-1KT $\sigma(NC-1\pi^{o})/\sigma(CC)$


- Water Cherenkov detector
- Signal definition: NC-1π⁰
- 1st meas. of NC-1 π^0 in H₂O
- Identify event using hit topology
 - Two e-like rings
- NC-1π⁰ purity: 71%
 - Resonant: 52%
 - Coherent: 10%
 - DIS: 4%, FSI(CC/NC-1π[±]): 3%
 - $\sigma(NC-1\pi^0) / \sigma(CC) = (6.4\pm0.1\pm0.7)\%$ <Ev>=1.3 GeV
 - In agreement with expectation (NEUT, R-S): 6.5%
- Momentum distribution disagrees

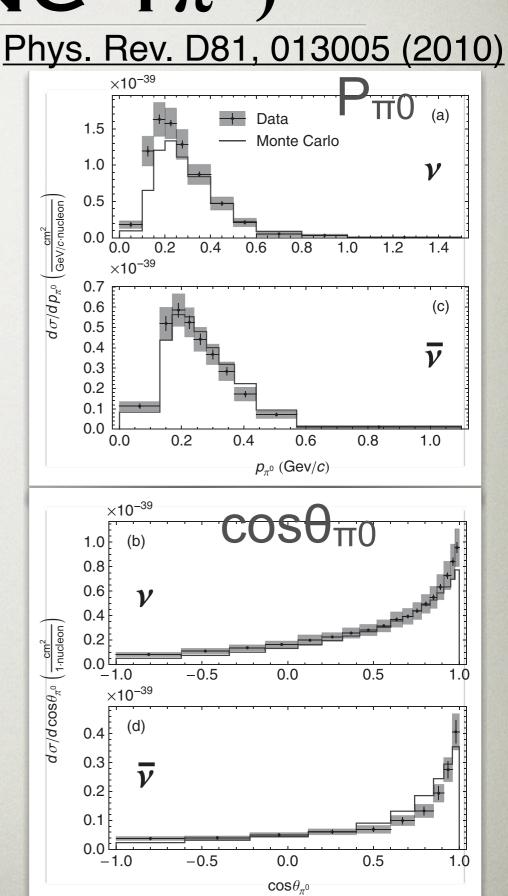
Phys. Lett. B619, 255 (2005)

Phys. Rev. D81, 013005 (2010)

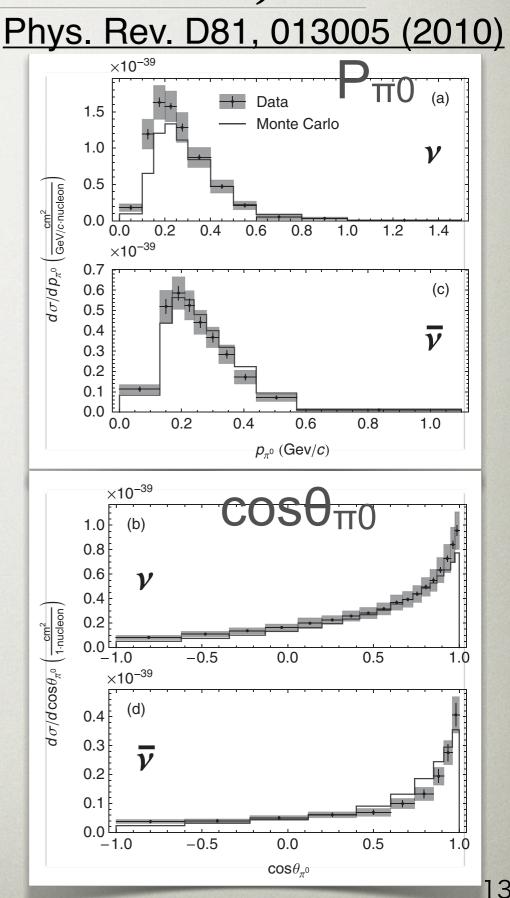
- Mineral oil Cherenkov detector
- Signal definition: NC-1π⁰
- 1st absolute NC-1 π^0 diff'l cross section
 - v and v modes
- Identify event using hit topology
 - Two e-like rings
- NC-1π⁰ purity: 73% (ν), 58% (ν̄)
 - Major Bkg components:
 - ν mode: NCπ[±](23%), CCπ^{±,0}(25%)
 - ν̄ mode: NCπ[±](13%), WS(56%)
 [π[±] produce π⁰ outside the target nucleus]
- Discrepancies in normalization and shape



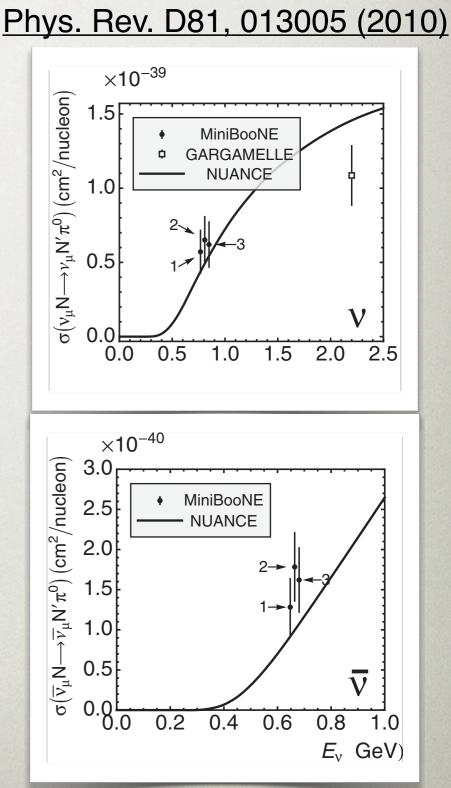
MiniBooNE Event Display (π⁰ event)


Phys. Rev. D81, 013005 (2010)

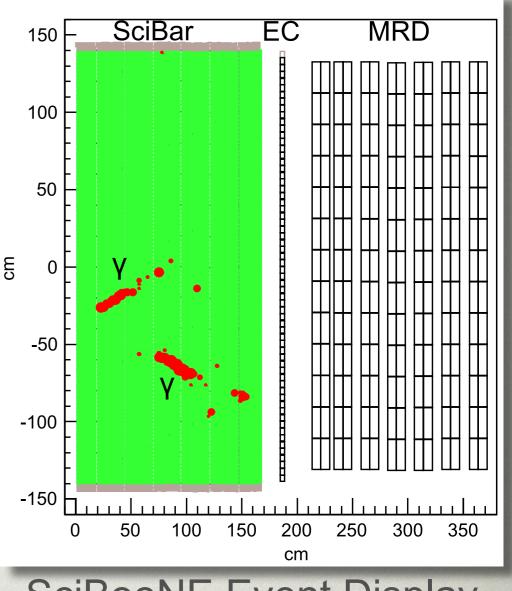
 \overline{v}


- Mineral oil Cherenkov detector
- Signal definition: NC-1π⁰
- 1st absolute NC-1π⁰ diff'l cross section
 - v and v modes
- Identify event using hit topology
 - Two e-like rings
- NC-1π⁰ purity: 73% (ν), 58% (ν̄)
 - Major Bkg components:
 - ν mode: NCπ[±](23%), CCπ^{±,0}(25%)
 - ν̄ mode: NCπ[±](13%), WS(56%)
 [π[±] produce π⁰ outside the target nucleus]
- Discrepancies in normalization and shape

- Mineral oil Cherenkov detector
- Signal definition: NC-1π⁰
- 1st absolute NC-1 π^0 diff'l cross section
 - v and v modes
- Identify event using hit topology
 - Two e-like rings
- NC-1π⁰ purity: 73% (ν), 58% (ν̄)
 - Major Bkg components:
 - ν mode: NCπ[±](23%), CCπ^{±,0}(25%)
 - ν̄ mode: NCπ[±](13%), WS(56%)
 [π[±] produce π⁰ outside the target nucleus]
- Discrepancies in normalization and shape

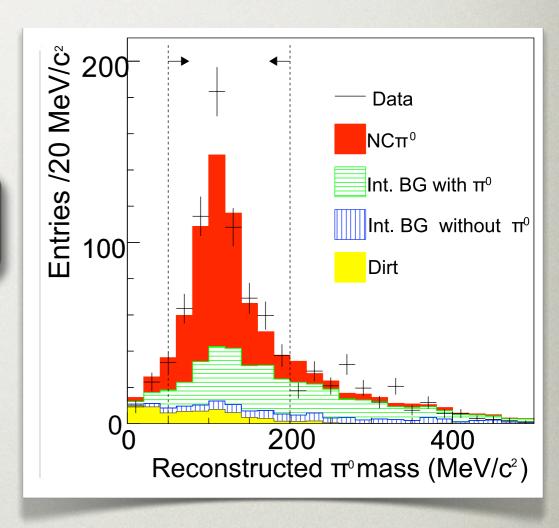

- Mineral oil Cherenkov detector
- Signal definition: NC-1π⁰
- 1st absolute NC-1π⁰ diff'l cross section
 - v and v modes
 - Inclusive NC-1 π^0 cross sections
 - least model dependence on coh-π and FSI
 - $\sigma(v \text{ NC-1}\pi^0) =$ (4.76±0.05±0.76)x10⁻⁴⁰ cm²/nucleon <Ev>=808MeV
 - $\sigma(\bar{\nu} \text{ NC-1}\pi^0) =$ (1.48±0.05±0.23)x10⁻⁴⁰ cm²/nucleon <Ev>=664MeV

MINIBOONE "INCOHERENT"

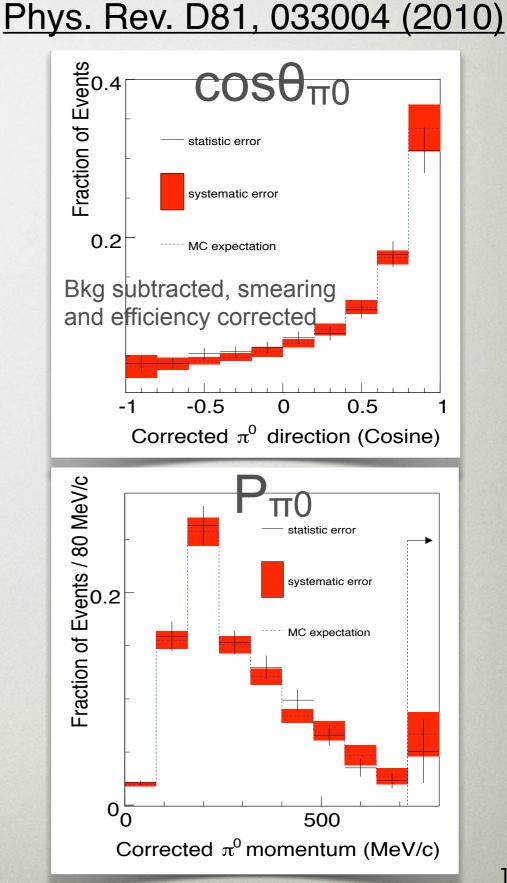

CROSS SECTION

- Extract exclusive "incoherent" NC-1π0 cross section
 - Subtract NC coherent-π process as a background & Efficiency correction at initial interaction vertex
- $\sigma(v \text{ NC-1}\pi^0) =$ (5.71±0.08_{stat}±1.45_{sys})x10⁻⁴⁰ cm²/nucleon
- $\sigma(\bar{\nu} \text{ NC-1}\pi^0) =$ (1.28±0.07_{stat}±0.35_{sys})x10⁻⁴⁰ cm²/nucleon
- Found a significant effect of FSI
- Demonstrate coh-π model dependence using three different models:
 - 1: MiniBooNE NUANCE (65% of R-S model)
 - 2: J. E. Amaro et al, PRD79, 013002 (2009)
 - 3: L. Alvarez-Ruso et al, PRC76, 068501 (2007)

SCIBOONE σ(NC-π^O)/σ(CC) <u>Phys. Rev. D81, 033004 (2010)</u>


- Tracking (SciBar) + EM-Cal (EC)
- Signal definition: NC-π⁰
- Identify "shower-like" tracks in SciBar
- NC-π⁰ purity: 61% (resonant: 40%, coherent: 15%, DIS/Multi-π: 5%)
- $\sigma(NC-\pi^{0})/\sigma(CC) = (7.7\pm0.5\pm0.5)\times10^{-2}$ <Ev>=1.14 GeV
 - In agreement with expectation (NEUT, R-S): 6.8x10⁻²
 - Cross check with NUANCE
 - $\sigma(NC-\pi^0)/\sigma(CC) = 7.9x10^{-2}$ (NUANCE expectation: 7.1E-2)
- π⁰ kinematics of expectation (NEUT) in good agreement with data within error.

SciBooNE Event Display (NC-π0 candidate)


SCIBOONE σ(NC-π^O)/σ(CC) <u>Phys. Rev. D81, 033004 (2010)</u>

- Tracking (SciBar) + EM-Cal (EC)
- Signal definition: NC-π⁰
- Identify "shower-like" tracks in SciBar
- NC-π⁰ purity: 61% (resonant: 40%, coherent: 15%, DIS/Multi-π: 5%)
- $\sigma(NC-\pi^{0})/\sigma(CC) = (7.7\pm0.5\pm0.5)x10^{-2}$ <Ev>=1.14 GeV
 - In agreement with expectation (NEUT, R-S): 6.8x10⁻²
 - Cross check with NUANCE
 - σ(NC-π⁰)/σ(CC) = 7.9x10⁻²
 (NUANCE expectation: 7.1E-2)
- π⁰ kinematics of expectation (NEUT)
 in good agreement with data within error.

SCIBOONE $\sigma(NC-\pi^{o})/\sigma(CC)$

- Tracking (SciBar) + EM-Cal (EC)
- Signal definition: NC-π⁰
- Identify "shower-like" tracks in SciBar
- NC-π⁰ purity: 61% (resonant: 40%, coherent: 15%, DIS/Multi-π: 5%)
- $\sigma(NC-\pi^{0})/\sigma(CC) = (7.7\pm0.5\pm0.5)x10^{-2}$ <Ev>=1.14 GeV
 - In agreement with expectation (NEUT, R-S): 6.8x10⁻²
 - Cross check with NUANCE
 - $\sigma(NC-\pi^0)/\sigma(CC) = 7.9x10^{-2}$ (NUANCE expectation: 7.1E-2)
- π⁰ kinematics of expectation (NEUT) in good agreement with data within error.

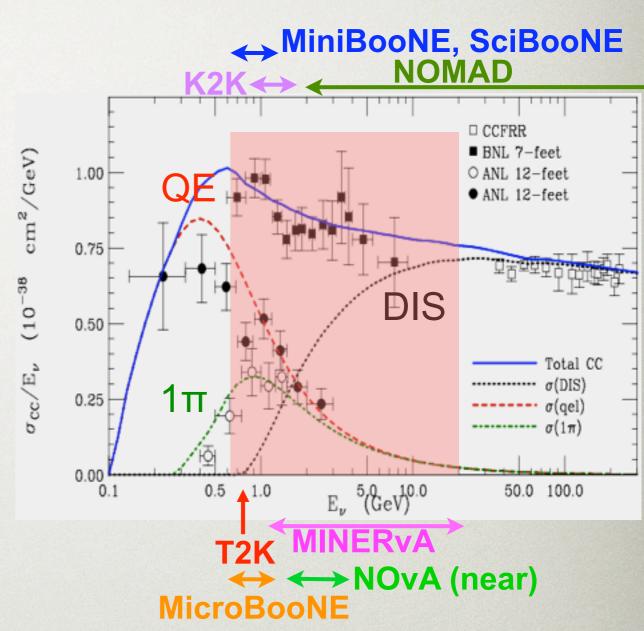
REMARKS FROM RECENT MEASUREMENTS

- High statistics, systematic error dominating
- K2K-1KT and MiniBooNE saw a Data/MC discrepancies in π⁰ kinematics.
- Exclusive incoherent NC-1π⁰ cross section [MiniBooNE]
 - Significant effect of FSI
 - Coh-π model dependence can be covered by existing systematic error.
- Results of cross section ratio using different event-generators (NEUT, NUANCE) are in agreement within error [SciBooNE].

LOOKING FORWARD

- Recent results on NC-π⁰ satisfy the requirements (~10% precision) from current v oscillation experiments, T2K (and NOvA).
- Next generation experiments, CP violation & mass hierarchy measurements require
 - σ_v error should be (much) smaller than 10% ($\leq 5\%$?)

→ Need σ_v measurement with more precise control of systematic errors on flux and Bkg processes, including FSI.


→ Need reliable predictions/models of multiple processes (resonant- π , multi- π , DIS, FSI)

• σ_v in a wide energy range: 0.5~20 GeV

→ New experiment!

New Experiments

- MINERvA: Fine-grained scintillator, FNAL-NuMI, He, C, H₂O, Fe, Pb, Ev=1~20GeV
- T2K Near Detector: Fine-grained scintillator, TPC in Magnet, J-PARC, C, H₂O, Pb, Ev~0.7GeV
- NOvA Near Detector: Liquid scintillator tracker, FNAL-NuMI, C, Ev~2 GeV
- MicroBooNE: Liquid Argon TPC, FNAL-BNB, Ar, Ev~0.7GeV

They compliment each other; cover wide energy range, several nuclear targets, several detection techniques.

SUMMARY

- Precise knowledge of NC-1π⁰ is vital in the hunt for θ₁₃, δ_{cp} and mass hierarchy
- Recent measurements on NC-π0
 - K2K, MiniBooNE, SciBooNE
 - High statistics, systematics error dominating
 - Satisfying the requirements from current generation θ_{13} experiments, T2K, NOvA.
- New experiments can go further!
 - MINERvA, T2K near, NOvA near, MicroBooNE
 - Important for next generation v oscillation experiment: δ_{cp} , mass hierarchy.