Superscaling predictions for NC and CC Quasi-elastic Neutrino-Nucleus Scattering

Jose Enrique Amaro

Universidad de Granada

Overview - SuSA

- General formalism for neutrino scattering
- The Relativistic Fermi Gas (RFG)
- Super-Scaling Analysis (SuSA)
- The semi-relativistic shell model (SRSM)
- The relativistic mean field (RMF)
- Neutrino excitation of the Δ peak
- Neutral Current neutrino reactions
- SuSA predictions for the MiniBooNE QE cross section

Example: CC neutrino reaction

$$\nu + A \to l^- + B$$

Effective Hamiltonian

$$\mathcal{H}_{eff} = \frac{G\cos\theta_c}{\sqrt{2}} j^{\mu}(x) \hat{J}_{\mu}(x)$$

Couplig constant: $G = 1.1664 \times 10^{-5} \text{GeV}^{-2}$ Cabibbo angle: $\theta_c = 0.974$ Leptonic current $(\nu \to l)$: $j^{\mu} = \overline{u}_l(\mathbf{k}')\gamma^{\mu}(1 - \gamma_5)u_{\nu}(\mathbf{k})$ Hadronic current (single nucleon $n \to p$) is of the form V - A

$$\hat{J}_{\mu} = \overline{u}_{p}(\mathbf{p}') \left[F_{1}(Q^{2})\gamma_{\mu} + F_{2}(Q^{2})i\sigma_{\mu\nu}\frac{Q^{\nu}}{2m_{N}} - G_{A}(Q^{2})\gamma_{\mu}\gamma_{5} - G_{P}(Q^{2})\frac{Q_{\mu}}{2m_{N}}\gamma_{5} \right] u_{n}(\mathbf{p})$$

Momentum transfer $Q^{\mu} = K^{\mu} - K'^{\mu} = P'^{\mu} - P^{\mu}$ Axial form factor $G_A = \frac{g_A}{1 - Q^2/M_A^2}$ $g_A = 1.26, M_A = 1032 \text{ MeV}$

Example: S-matrix element

Neutrino scattering with initial and final hadronic states $|i\rangle \rightarrow |f\rangle$ Transition matrix element to first order in the interaction

$$S_{fi} = -i \int d^4 \langle l, f | \mathcal{H}_{eff}(x) | \nu_l, i \rangle = \left[-2\pi i \delta (E_f - E_i - \omega) \frac{G \cos \theta_c}{\sqrt{2}} l^\mu J_\mu \right]$$

Lepton current matrix element

$$l^{\mu} = \left[\frac{m'}{V\epsilon'}\frac{m}{V\epsilon}\right]^{1/2} \overline{u}_l(\mathbf{k}')\gamma^{\mu}(1-\gamma_5)u_{\nu}(\mathbf{k})$$

Hadronic current matrix element

$$J_{\mu} = \langle f | \hat{J}_{\mu}(\mathbf{q}) | i \rangle$$

Example: cross Section

Inclusive: only the final lepton is detected

$$d\sigma = \frac{\overline{\sum}|S_{fi}|^2}{T} \frac{V}{v_{rel}} \frac{V d^3 k'}{(2\pi)^3}$$

Performing the lepton traces

$$\frac{d\sigma}{d\Omega' d\epsilon'} = \frac{G^2 \cos^2 \theta_c}{4\pi^2} \frac{k'}{\epsilon} \left(s_{\mu\nu} + ia_{\mu\nu}\right) W^{\mu\nu}$$

Hadronic tensor

$$W^{\mu\nu} = \overline{\sum_{fi}} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(\mathbf{q}) | i \rangle^* \langle f | J^{\nu}(\mathbf{q}) | i \rangle$$

Leptonic tensors

$$s^{\mu\nu} = 2P^{\mu}P^{\nu} - \frac{1}{2}Q^{\mu}Q^{\nu} + \frac{Q^2 - m'^2}{2}g^{\mu\nu} \qquad P^{\mu} = \frac{K^{\mu} + K'^{\mu}}{2}$$
$$a^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta}Q_{\alpha}P_{\beta} \qquad Q^{\mu} = K^{\mu} - K'^{\mu}$$

JE Amaro - Oct 20<mark>10 – p. 7</mark>

(ν_l, l^-) formalism (II)

Nuclear structure information:

 $\mathcal{F}_{+}^{2} = \widehat{V}_{CC}R_{CC} + 2\widehat{V}_{CL}R_{CL} + \widehat{V}_{LL}R_{LL} + \widehat{V}_{T}R_{T} + 2\widehat{V}_{T'}R_{T'}$

(ν_l, l^-) formalism (II)

Nuclear structure information:

$$\mathcal{F}_{+}^{2} = \hat{V}_{CC}R_{CC} + 2\hat{V}_{CL}R_{CL} + \hat{V}_{LL}R_{LL} + \hat{V}_{T}R_{T} + 2\hat{V}_{T'}R_{T'}$$

kinematical factors \widehat{V}_K from the leptonic tensor

$$\widehat{V}_{CC} = 1 - \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{CL} = \frac{\omega}{q} + \frac{\delta^2}{\rho'} \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{LL} = \frac{\omega^2}{q^2} + \left(1 + \frac{2\omega}{q\rho'} + \rho\delta^2\right) \delta^2 \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_T = \tan^2 \frac{\widetilde{\theta}}{2} + \frac{\rho}{2} - \frac{\delta^2}{\rho'} \left(\frac{\omega}{q} + \frac{1}{2}\rho\rho'\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

$$\widehat{V}_{T'} = \frac{1}{\rho'} \left(1 - \frac{\omega\rho'}{q}\delta^2\right) \tan^2 \frac{\widetilde{\theta}}{2}$$

(ν_l, l^-) formalism (II)

Nuclear structure information:

$$\mathcal{F}_{+}^{2} = \widehat{V}_{CC}R_{CC} + 2\widehat{V}_{CL}R_{CL} + \widehat{V}_{LL}R_{LL} + \widehat{V}_{T}R_{T} + 2\widehat{V}_{T'}R_{T'}$$
Adimensional variables:

kinematical factors \widehat{V}_K from the leptonic tensor

 $\widehat{V}_{T'} = \frac{1}{\rho'} \left(1 - \frac{\omega \rho'}{q} \delta^2 \right) \tan^2 \frac{\theta}{2}$

cal factors
$$\hat{V}_{K}$$
 from the leptonic tensor
 $\hat{V}_{CC} = 1 - \delta^{2} \tan^{2} \frac{\tilde{\theta}}{2}$
 $\hat{V}_{CL} = \frac{\omega}{q} + \frac{\delta^{2}}{\rho'} \tan^{2} \frac{\tilde{\theta}}{2}$
 $\hat{V}_{LL} = \frac{\omega^{2}}{q^{2}} + \left(1 + \frac{2\omega}{q\rho'} + \rho\delta^{2}\right) \delta^{2} \tan^{2} \frac{\tilde{\theta}}{2}$
 $\hat{V}_{T} = \tan^{2} \frac{\tilde{\theta}}{2} + \frac{\rho}{2} - \frac{\delta^{2}}{\rho'} \left(\frac{\omega}{q} + \frac{1}{2}\rho\rho'\delta^{2}\right) \tan^{2} \frac{\theta}{2}$
 $\delta = \frac{m'}{\sqrt{|Q^{2}|}}$
 $\rho = \frac{|Q^{2}|}{q^{2}}$
 $\rho' = \frac{q}{\epsilon + \epsilon'}$.
The only dependence on the muon mass m' is in δ

 $\frac{|Q^2|}{q^2}$

 $\overline{\epsilon + \epsilon'}$

n' is in δ

(ν_l, l^-) formalism (III)

Weak response functions

 $R_{CC} = W^{00}$ $R_{CL} = -\frac{1}{2} \left(W^{03} + W^{30} \right)$ $R_{LL} = W^{33}$ $R_T = W^{11} + W^{22}$ $R_{T'} = -\frac{i}{2} \left(W^{12} - W^{21} \right)$

(ν_l, l^-) formalism (III)

$$R_{CC} = W^{00}$$

$$R_{CL} = -\frac{1}{2} (W^{03} + W^{30})$$

$$R_{LL} = W^{33}$$

$$R_{T} = W^{11} + W^{22}$$

$$R_{T'} = -\frac{i}{2} (W^{12} - W^{21})$$

Weak CC hadronic tensor:

response

Weak

functions

$$W^{\mu\nu}(q,\omega) = \sum_{fi} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(Q) | i \rangle^* \langle f | J^{\nu}(Q) | i \rangle .$$

(ν_l, l^-) formalism (III)

R_{CC} =
$$W^{00}$$

R_{CL} = $-\frac{1}{2} (W^{03} + W^{30})$
R_{LL} = W^{33}
R_T = $W^{11} + W^{22}$
R_{T'} = $-\frac{i}{2} (W^{12} - W^{21})$
C hadronic tensor:

Weak CC hadronic

Weak

functions

$$W^{\mu\nu}(q,\omega) = \sum_{fi} \delta(E_f - E_i - \omega) \langle f | J^{\mu}(Q) | i \rangle^* \langle f | J^{\nu}(Q) | i \rangle .$$

 $J^{\mu}(Q)$: the hadronic CC current operator

Nuclear Weak responses

Expand into vector and axial-vector contributions

$$R_{CC} = R_{CC}^{VV} + R_{CC}^{AA} \qquad R_{CL} = R_{CL}^{VV} + R_{CL}^{AA}$$
$$R_{LL} = R_{LL}^{VV} + R_{LL}^{AA}$$
$$R_{T} = R_{T}^{VV} + R_{T}^{AA} \qquad R_{T'} = R_{T'}^{VA}$$

$$\begin{split} R_{CL}^{VV} &= -\frac{\omega}{q} R_{CC}^{VV} \qquad R_{LL}^{VV} = \frac{\omega^2}{q^2} R_{CC}^{VV} \stackrel{\text{Conserved vector current}}{\text{tor current}} \\ \widehat{V}_{CC} R_{CC}^{VV} + 2 \widehat{V}_{CL} R_{CL}^{VV} + \widehat{V}_{LL} R_{LL}^{VV} = \widehat{V}_L R_L^{VV} \equiv X_L^{VV} \stackrel{\text{traditional longitudinal contribution}}{\text{tor control}} \\ \widehat{V}_{CC} R_{CC}^{AA} + 2 \widehat{V}_{CL} R_{CL}^{AA} + \widehat{V}_{LL} R_{LL}^{AA} \equiv X_{C/L}^{AA} \stackrel{\text{Collapse does}}{\text{collapse does}} \\ \widehat{V}_T \left[R_T^{VV} + R_T^{AA} \right] \equiv X_T \stackrel{\text{Transverse}}{\text{components}} \\ 2 \widehat{V}_{T'} R_{T'}^{VA} \equiv X_{T'} \stackrel{\text{V/A interference}}{\text{term}} \end{split}$$

Full response: $\mathcal{F}^2_{\pm} = X_L^{VV} + X_{C/L}^{AA} + X_T \pm X_{T'}$

Nuclear response functions for (ν_{μ}, μ^{-}) reactions

 $R_K = N\Lambda_0 U_K f_{RFG}(\psi), \quad K = CC, CL, LL, T, T',$

• *N* is the neutron number,

•
$$\Lambda_0 = \frac{\xi_F}{m_N \eta_F^3 \kappa}, \quad \eta_F = k_F/m_N, \quad \xi_F = \sqrt{1 + \eta_F^2} - 1.$$

- Scaling function $f_{RFG}(\psi) = \frac{3}{4}(1-\psi^2)\theta(1-\psi^2)$
- Scaling variable

$$\psi = \frac{1}{\sqrt{\xi_F}} \frac{\lambda - \tau}{\sqrt{(1 + \lambda)\tau + \kappa\sqrt{\tau(1 + \tau)}}}$$

• single-nucleon responses U_K

Single-nucleon responses, K = CC

$$U_{CC} = U_{CC}^{V} + (U_{CC}^{A})_{c.} + (U_{CC}^{A})_{n.c.}$$
$$U_{CC}^{V} = \frac{\kappa^{2}}{\tau} \left[(2G_{E}^{V})^{2} + \frac{(2G_{E}^{V})^{2} + \tau (2G_{M}^{V})^{2}}{1 + \tau} \Delta \right]$$

$$\Delta = \frac{\tau}{\kappa^2} \xi_F (1 - \psi^2) \left[\kappa \sqrt{1 + \frac{1}{\tau}} + \frac{\xi_F}{3} (1 - \psi^2) \right]$$

The axial-vector response is the sum of conserved (c.) plus non conserved (n.c.) parts,

$$\left(U_{CC}^{A}\right)_{\mathrm{c.}} = \frac{\kappa^{2}}{\tau}G_{A}^{2}\Delta$$
, $\left(U_{CC}^{A}\right)_{\mathrm{n.c.}} = \frac{\lambda^{2}}{\tau}G_{A}^{\prime 2}$

JE Amaro - Oct 2010 - p. 13

Single-nucleon responses, K = CL, LL

$$U_{CL} = U_{CL}^{V} + (U_{CL}^{A})_{c.} + (U_{CL}^{A})_{n.c.}$$
$$U_{LL} = U_{LL}^{V} + (U_{LL}^{A})_{c.} + (U_{LL}^{A})_{n.c.},$$

The vector and conserved axial-vector parts are determined by current conservation

Non-conserved n.c. parts:

$$\left(U_{CL}^{A}\right)_{\text{n.c.}} = -\frac{\lambda\kappa}{\tau}G_{A}^{\prime 2} \quad , \quad \left(U_{LL}^{A}\right)_{\text{n.c.}} = \frac{\kappa^{2}}{\tau}G_{A}^{\prime 2}$$

Single-nucleon responses, K = T, T'

$$U_{T} = U_{T}^{V} + U_{T}^{A}$$

$$U_{T}^{V} = 2\tau (2G_{M}^{V})^{2} + \frac{(2G_{E}^{V})^{2} + \tau (2G_{M}^{V})^{2}}{1 + \tau} \Delta$$

$$U_{T}^{A} = 2(1 + \tau)G_{A}^{2} + G_{A}^{2} \Delta$$

$$U_{T'} = 2G_{A}(2G_{M}^{V})\sqrt{\tau(1 + \tau)}[1 + \tilde{\Delta}]$$

with

$$\tilde{\Delta} = \sqrt{\frac{\tau}{1+\tau}} \frac{\xi_F (1-\psi^2)}{2\kappa}$$

5

Scaling in the RFG (Relativistic Fermi gas)

$$R_K = G_K f_{RFG}(\psi)$$

Functions G_K from the RFG for electrons (K = L, T) and neutrinos K = CC, CL, LL, T, T'. Scaling function in the RFG

$$f_{RFG}(\psi) = \frac{3}{4}(1-\psi^2)\theta(1-\psi^2)$$

Scaling variable:

$$\psi = \frac{1}{\sqrt{\xi_F}} \frac{\lambda - \tau}{\sqrt{(1 + \lambda)\tau + \kappa\sqrt{\tau(1 + \tau)}}}$$

Experimental scaling function from (e, e')

$$\begin{aligned}
&\int \left(\frac{d\sigma}{d\Omega' d\epsilon'}\right)_{exp} \\
&\int f(\psi') = \frac{\left(\frac{d\sigma}{d\Omega' d\epsilon'}\right)_{exp}}{\sigma_{Mott}(v_L G_L + v_T G_T)}
\end{aligned}$$
shifted $\rightarrow \psi' = \frac{1}{\sqrt{\xi_F}} \frac{\lambda' - \tau'}{\sqrt{(1 + \lambda')\tau' + \kappa}\sqrt{\tau'(1 + \tau')}} \\
&\lambda' = (\omega - E_s)/2m_N, \quad \tau' = \kappa^2 - \lambda'^2
\end{aligned}$
 k_F y E_s are fitted to the data
$$f_L = \frac{R_L}{G_L} \text{Longitudinal} \quad f_T = \frac{R_T}{G_T} \text{Transverse}$$

۲

Superscaling

- Plot the experimental $f(\psi')$ versus ψ' for different kinematics and nuclei
- Fit E_s and k_F to get scaling (one universal scaling function)

Scaling in the QE peak

Summary of past work by Donnelly & Sick PRC 60 (1999)

T. W. DONNELLY AND INGO SICK

PHYSICAL REVIEW C 60 065502

FIG. 2. (Color) Scaling function $f(\psi')$ as function of ψ' for all nuclei $A \ge 12$ and all kinematics. The values of A corresponding to different symbols are shown in the inset.

Scaling properties of data

- Good 1st-kind scaling below the QE peak (scaling region)

Scaling properties of data

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)

Scaling properties of data

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region
Scaling properties of data

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region
- The longitudinal response appears to superscale

Scaling properties of data

- Good 1st-kind scaling below the QE peak (scaling region)
- Above the peak the scaling is broken (Δ region)
- Scaling of the 2nd-kind works well in the scaling region
- The longitudinal response appears to superscale
- Scaling violations reside in the transverse response,

Fit in the Quasi-elastic peak

JE Amaro - Oct 2010 - p. 21

SuSA (Super Scaling Analysis)

• Using the experimental (*e*, *e'*) scaling function to predict neutrino cross sections

· · NuFact · ·

SuSA (Super Scaling Analysis)

- Using the experimental (e, e') scaling function to predict neutrino cross sections
- Use the RFG equations to compute the (ν_l, l^-) response functions with the substitution $f_{RFG}(\psi) \longrightarrow f_{exp}(\psi)$

SuSA (Super Scaling Analysis)

- Using the experimental (e, e') scaling function to predict neutrino cross sections
- Use the RFG equations to compute the (ν_l, l^-) response functions with the substitution $f_{RFG}(\psi) \longrightarrow f_{exp}(\psi)$
- Needed to justify theoretically the validity of SuSA

	••••
4 The semirelativistic shell mod	el
 Study the scaling properties in realistic models 	
· · NuFact	
	E Amaro - Oct 20

JE Amaro - Oct 2010 - p. 23

4 The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA

4 The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA
- Include relativistic effects in the model

4 The semirelativistic shell model

- Study the scaling properties in realistic models
- Estimate the validity range of SuSA
- Include relativistic effects in the model
- Compare with the experimental scaling function

The continuum shell-model (CSM)

- Closed-shell nuclei ¹²C, ¹⁶O and ⁴⁰Ca,
- Initial state $|i\rangle$: Slater determinant with all shells occupied.
- Impulse approximation: final states are particle-hole excitations coupled to total angular momentum

 $|f\rangle = |(ph^{-1})J\rangle$

- Single hole wave function $|h\rangle = |\epsilon_h l_h j_h\rangle$
- Single particle wave function $|p\rangle = |\epsilon_p l_p j_p\rangle$
- Obtained by solving the Schrödinger equation

Woods-Saxon potential

$$V(r) = -V_0 f(r, R_0, a_0) + \frac{V_{ls}}{m_\pi^2 r} \frac{df(r, R_0, a_0)}{dr} \mathbf{l} \cdot \boldsymbol{\sigma} + V_C(r)$$

$$f(r, R, a) = \frac{1}{1 + e^{(r-R)/a}}$$

$$V_C(r): \text{ Coulomb potential.}$$

$$\frac{V_0^p + V_{LS}^p + V_0^n + V_{LS}^n + r_0 + a_0}{\frac{12C}{62.0}}$$

$$\frac{V_0^p + V_{LS}^p + V_0^n + V_{LS}^n + r_0 + a_0}{\frac{12C}{62.0}}$$

$$\frac{V_0^p + V_{LS}^p + V_0^n + V_{LS}^n + r_0 + a_0}{\frac{12C}{62.0}}$$

•

•

•

۲

•

• •

The SR approach
A EXPAND THE RELATIVISTIC SINGLE-NUCLEON CURRENT

$$j^{\mu}(\vec{p'},\vec{p}) = \vec{u}(\vec{p'})\Gamma^{\mu}(Q)u(\vec{p})$$

in powers of $\vec{\eta} = \vec{p}/m_N$. to first order $O(\eta)$
Not expand in $\vec{p'}/m_N$.
 $\Rightarrow q, \omega$ can be large

 The relativistic kinematics are taken into account by the substitution

$$\epsilon_p \to \epsilon_p (1 + \epsilon_p / 2m_N)$$

as the eigenvalue of the Schrödinger equation for the particle

$$J_V^0 = \xi_0 + i\xi'_0(\boldsymbol{\kappa} \times \boldsymbol{\eta}) \cdot \boldsymbol{\sigma}$$

$$\mathbf{J}_V^\perp = \xi_1 \boldsymbol{\eta}^\perp + i\xi'_1 \boldsymbol{\sigma} \times \boldsymbol{\kappa} ,$$

 (q,ω) -dependent factors:

$$\xi_0 = \frac{\kappa}{\sqrt{\tau}} 2G_E^V \quad , \quad \xi_0' = \frac{2G_M^V - G_E^V}{\sqrt{1 + \tau}}$$
$$\xi_1' = 2G_M^V \frac{\sqrt{\tau}}{\kappa} \quad , \quad \xi_1 = 2G_E^V \frac{\sqrt{\tau}}{\kappa}$$

provide the required relativistic behavior.

The longitudinal component is given from vector current conservation, $J_V^3 = \frac{\lambda}{\kappa} J_V^0$.

The SR axial-vector current

$$J_A^{\perp} = \zeta_1' \sigma^{\perp}, \quad \zeta_1' = \sqrt{1 + \tau} G_A.$$

 Neglect the terms of order $O(\eta)$
 $J_A^0 = \zeta_0' \kappa \cdot \sigma + \zeta_0'' \eta^{\perp} \cdot \sigma$
 $J_A^z = \zeta_3' \kappa \cdot \sigma + \zeta_3'' \eta^{\perp} \cdot \sigma$

 Longitudinal component

The SR axial-vector current

$$J_{A}^{\perp} = \zeta_{1}^{\prime} \sigma^{\perp}, \quad \zeta_{1}^{\prime} = \sqrt{1 + \tau} G_{A}.$$
Transverse
Neglect the terms of order $O(\eta)$

$$J_{A}^{0} = \zeta_{0}^{\prime} \kappa \cdot \sigma + \zeta_{0}^{\prime\prime} \eta^{\perp} \cdot \sigma$$

$$J_{A}^{2} = \zeta_{3}^{\prime} \kappa \cdot \sigma + \zeta_{3}^{\prime\prime} \eta^{\perp} \cdot \sigma,$$
Inter component

$$\zeta_{A}^{\prime} = \zeta_{A}^{\prime} \kappa, \quad \zeta_{0}^{\prime\prime} = \frac{\kappa}{\sqrt{\tau}} \left[G_{A} - \frac{\lambda^{2}}{\kappa^{2} + \kappa\sqrt{\tau(\tau + 1)}} G_{A}^{\prime} \right]$$

$$\zeta_{3}^{\prime} = \frac{1}{\sqrt{\tau}} G_{A}^{\prime}, \quad \zeta_{3}^{\prime\prime} = \frac{\lambda}{\sqrt{\tau}} \left[G_{A} - \frac{\kappa}{\kappa + \sqrt{\tau(\tau + 1)}} G_{A}^{\prime} \right]$$

$$G_{A}^{\prime} = G_{A} - \tau G_{P} \text{ small due to cancellations}$$
The $O(\eta)$ term, proportional to $\vec{\eta}^{\perp} \cdot \vec{\sigma}$ is dominant

• ۲ ۲

JE Amaro - Oct 2010 - p. 30

A responses

.

Scaling of the first kind

SR Shell model

Curves for q = 0.5, 0.7, 1, 1.3, 1.5 GeV collapse into one

Scaling of the second kind

Curves for ¹²C, ¹⁶O and ⁴⁰Ca collapse into one

• Both the DEB potential $U_{DEB}(r, E)$ and Darwin term K(r, E) are energy-dependent

CC neutrino reactions

- SuSA reconstruction of the (ν_{μ},μ^{-}) cross section from the (e,e') one
- Test of the SuSA in the CSM
- The CSM electromagnetic scaling function is used to compute neutrino cross sections.
- Compare with the exact CSM result

Scaling violation for low q

- •
- •

- - - · · NuFact ·

- - •
- - JE Amaro Oct 2010 p. 42

INUIGU

Scaling violation for low q

INULGU

Scaling violation for low q

5 The Relativistic Mean Field (RMF)

- Solve the exact relativistic Dirac equation for the initial and final nucleons
- Use the exact relativistic V and A current operators
- Describe the bound nucleon states as self-consistent Dirac-Hartree solutions using a lagrangian containing σ , ω and ρ mesons
- Use the same relativistic Diract-Hartree potential for the final states (FSI)

(ν_{μ}, μ^{-}) results with the RMF

Neutrino scaling function Compared to the experimental scaling function

- RPWIA (solid),
- rROP (dashed)
- RMF (dot-dashed)
- Parameterization of data (dotted)

From Caballero, Amaro, Barbaro, Donnelly, Maieron, and Udias, PRL 95 (2005)

(ν_{μ}, μ^{-}) results with the RMF

Total integrated (ν_{μ}, μ) QE cross section for ¹²C as a function of the incident neutrino energy.

- RMF (squares),
- RFG (solid line)
- SuSA (dashed line),
- RPWIA (dot-dashed line)
- SRWS (circles)
- SRWS-tot (crosses).

From Amaro, Barbaro, Caballero, Donnelly Phys. Rev. Lett. 98 (2007)

6 Neutrino excitation of the \triangle peak

J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Nucl. Phys. A 657 (1999) 161.

New scaling variable for the Δ peak :

$$\psi_{\Delta} \equiv \left[\frac{1}{\xi_{F}} \left(\kappa \sqrt{\rho_{\Delta}^{2} + 1/\tau} - \lambda \rho_{\Delta} - 1\right)\right]^{1/2} \times \begin{cases} +1 & \lambda \ge \lambda_{\Delta}^{0} \\ -1 & \lambda \le \lambda_{\Delta}^{0} \end{cases}$$
$$\lambda_{\Delta}^{0} = \frac{1}{2} \left[\sqrt{\mu_{\Delta}^{2} + 4\kappa^{2}} - 1\right], \qquad \mu_{\Delta} \equiv m_{\Delta}/m_{N}$$
$$\rho_{\Delta} \equiv 1 + \beta_{\Delta}/\tau \qquad \beta_{\Delta} \equiv \frac{1}{4} \left(\mu_{\Delta}^{2} - 1\right)$$

 ψ_{Δ} Vanishes at the Δ peak $\Longrightarrow \omega = \omega_{\Delta}^0 = \sqrt{m_{\Delta}^2 + q^2} - m_N$

Include a small energy shift $\omega \to \omega' \equiv \omega - E_{shift}$. yielding a shifted scaling variable ψ'_{Δ} .

RFG responses in the \triangle peak

ignoring terms of order η_F^2 :

$$R_L^{\Delta}(\kappa,\lambda)_0 = \frac{1}{2}\Lambda_0 \frac{\kappa^2}{\tau} \left[\left(1 + \tau \rho_{\Delta}^2 \right) w_2^{\Delta}(\tau) - w_1^{\Delta}(\tau) \right] \times f_{RFG}(\psi_{\Delta})$$

$$R_T^{\Delta}(\kappa,\lambda)_0 = \frac{1}{2}\Lambda_0 \left[2w_1^{\Delta}(\tau) \right] \times f_{RFG}(\psi_{\Delta}),$$

$$\Lambda_0 = \frac{\mathcal{N}}{2\kappa k_F}$$

One should add the contributions:

 $\mathcal{N} = Z$ and the $p \to \Delta^+$ structure functions $\mathcal{N} = N$ and the $n \to \Delta^0$ responses.

Experimental \triangle scaling function

- Substract from the total (e, e') experimental cross section the QE cross section recalculated using $f^{QE}(\psi'_{QE})$
- Divide by $S^{\Delta} \equiv \sigma_M \left[v_L G_L^{\Delta} + v_T G_T^{\Delta} \right]$

$$G_L^{\Delta} = \frac{\kappa}{2\tau k_F} \left[\mathcal{N} \left\{ \left(1 + \tau \rho_{\Delta}^2 \right) w_2^{\Delta}(\tau) - w_1^{\Delta}(\tau) \right\} \right] + \mathcal{O}(\eta_F^2)$$

$$G_T^{\Delta} = \frac{1}{\kappa k_F} \left[\mathcal{N} \left\{ w_1^{\Delta}(\tau) \right\} \right] + \mathcal{O}(\eta_F^2).$$

Scaling function in the \triangle peak

Scaling function in the \triangle peak

Scaling function in the \triangle peak

$N(\nu_{\mu}, \mu^{-})\Delta$ model

Elementary reactions

$$u_{\mu}p \rightarrow \mu^{-}\Delta^{++}$$
 (1)

$$u_{\mu}n \rightarrow \mu^{-}\Delta^{+}$$
 (2)

$$\bar{\nu}_{\mu}p \rightarrow \mu^{+}\Delta^{0}$$
 (3)

$$\bar{\nu}_{\mu}n \rightarrow \mu^{+}\Delta^{-}$$
 (4)

Associated currents [Alvarez-Ruso et al. (1998)]:

$$J^{\mu}(q) = \mathcal{T}\bar{u}^{(\Delta)}_{\alpha}(p',s')\Gamma^{\alpha\mu}u(p,s),$$
(5)

isospin factor: $\mathcal{T} = \sqrt{3}$ for Δ^{++} and Δ^{-} production and = 1 for Δ^{+} and Δ^{0} production, $u_{\alpha}^{(\Delta)}(p',s')$: Rarita-Schwinger spinor

$N(\nu_{\mu}, \mu^{-})\Delta$ model

Vertex tensor [Alvarez-Ruso (1998)]

$$\begin{split} &\Gamma^{\alpha\mu} = \\ &= \left[\frac{C_3^V}{m_N} \left(g^{\alpha\mu} \not\!\!\!\!/ - q^{\alpha} \gamma^{\mu} \right) + \frac{C_4^V}{m_N^2} \left(g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu} \right) + \frac{C_5^V}{m_N^2} \left(g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu} \right) \right] \gamma_5 \\ &+ \left[\frac{C_3^A}{m_N} \left(g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu} \right) + \frac{C_4^A}{m_N^2} \left(g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu} \right) + C_5^A g^{\alpha\mu} + \frac{C_6^A}{m_N^2} q^{\alpha} q^{\mu} \right] \end{split}$$

CVC implies $C_6^V = 0$ and PCAC yields $C_6^A = C_5^A (\mu_\pi^2 + 4\tau)^{-1}$, with $\mu_\pi = m_\pi/m_N$

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 45^{\circ}$

JE Amaro - Oct 2010 - p. 56

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 45^{\circ}$

JE Amaro - Oct 2010 - p. 56

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 45^{\circ}$

 $\theta = 90^{\circ}$

JE Amaro - Oct 2010 - p. 57

Neutrino energy: $\epsilon = 1 \text{ GeV}$

 $\theta = 135^{\circ}$

 $\theta = 180^{\circ}$

JE Amaro - Oct 2010 - p. 57

Angular distribution At the tops of the QE and Δ peaks - $\epsilon = 1 \text{ GeV}$ QF. /MeV/c) 10^{-14} \mathcal{V} Įn, 'dΩdk' 10^{-15} 5 10^{-16} 50 100 150 θ (deg) (u_{μ},μ)

Angular distribution At the tops of the QE and Δ peaks - $\epsilon = 1 \text{ GeV}$ QE 4 /MeV/c) 10^{-14} 'dΩdk 10^{-15} 5 10^{-16} 50 100 150 θ (deg) (u_{μ},μ)

Angular distribution

At the tops of the QE and Δ peaks - $\epsilon = 1$ GeV

Good approximation in the RFG

- Extend the SuSA model to the neutral current u-channel
- Assume that $F^{(u)}(\psi) = F^{(t)}(\psi)$

 Use the phenomenological scaling function extracted from (e, e') data to predict NC ν -nucleus cross sections.

Proton knock-out from ¹²C

- •

- •
- •
- •

- •
- •
- •
- •
- Blue: RFG
- Red: factorized RFG
- Green: Phenomenological SuSA model

Nucleon strangeness effects

 $\nu, \theta_p = 20^0$

0.8

0.6

0.4

0.2

0.02

0

400

- •
- •
- •
- •

- •
- •
- •

- Blue: strangeness
- Red: no strangeness
- 0 0 500800 600 700 400 0 0.50.14 $\bar{\nu}, \theta_p = 20^0$ 0.120.40.10.30.080.06 0.20.04

500

0.8

No strange

 $\mu_s = 0.55$ --

 $\nu, \theta_p = 60^0$

Nucleon strangeness effects

0.8

 $\nu, \theta_n = 20^0$

- Red: no strangeness
- $g_A^s = -0.2$ Strange 0.6 0.6 0.40.40.20.20 Ω 500800 100 600 700 200 300 400 400 0 0.030.5 $\bar{\nu}, \theta_n = 20^0$ $\bar{\nu}, \theta_n = 60^0$ 0.40.020.30.20.010.10 **└** 400 Ω 500600 700 800 0 100 200 300 400 $T_n[MeV]$ $T_n[MeV]$

0.8

No strange

 $\mu_s = 0.55$

 $\nu, \theta_n = 60^0$
8 SuSA predictions for the MiniBooNE QE cross section

J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, C.F. Williamson, arXiv:1010.1708, 8 Oct 2010

- Double differential neutrino cross sections from ¹²C
- Integrated over the neutrino flux
- Data from A.A. Aguilar-Arevalo *et al.*, (MiniBooNE Collaboration), PRD 81, 092005 (2010)
- Contribution of vector meson-exchange currents in the 2p-2h sector

SuSA without MEC

Flux-integrated ν_{μ} CCQE cross section per target nucleon versus the muon kinetic energy T_{μ} for various bins of $\cos \theta$. SuSA results fall below the data

Meson-Exchange Currents (MEC)

Two-particle two-hole Meson Exchange Currents (MEC)

- Relativistic Fermi Gas two-nucleon emission channel
- Added to the SuSA results
- A. De Pace et al. NPA 726, 303 (2003)
- J.E. Amaro et al. PRC 82, 0444601 (2010)

SuSA plus MEC (2p-2h)

- The MEC tend to increase the cross section
- Agreement with data out to $\cos \theta \sim 0.6$.
- At larger angles the MEC are not sufficient to account for the discrepancy

JE Amaro - Oct 2010 - p. 72

Conclusions and improvements of the model

- Strict SuSA predictions for (ν_{μ}, μ) QE x-section show a systematic discrepancy between data and theory
- SuSA+ MEC(2p-2h) yields results compatible with data for $\theta < 50^{\circ}$, but lie below data
- There are indications from RMF studies and from (e, e') data that the vector transverse response should be enhanced over the strict SuSA [Caballero et al, PLB 653 (2007)]
- Contributions of nuclear strong correlations to 2p-2h excitations also enhance the cross section in RFG [Amaro et al., PRC 82 (2010)]

SuSA predictions for QE v-nucleus scattering

