Jets and MET reconstruction with the Particle Flow technique

Simone Gennai, on behalf of the Particle Flow and Tau ld group

- Particle Flow in few words
- Jet reconstruction steps
- Jet performance
 - * Response
 - Energy and angular resolution
 - * comparison with other techniques

PFMET reconstruction and its Performance

- * Energy and angular resolution
- comparison with other techniques
- * Systematics
- * How your analysis can improve with the use of the PFlow
- A closer look at the algorithm
 - * linking
 - Particle reconstruction and identification
- * Conclusions

Particle Flow in few words

The particle-flow event reconstruction aims at reconstructing and identifying all stable particles in the event, with a thorough combination of all CMS sub-detectors.

Jet Reconstruction steps

* The particles are reconstructed and identified

- isolated leptons can be removed from the list of the particles to be considered in the jet clustering
 - * see the tutorial for more informations

* N.B.: charged particle momentum is taken at production vertex!

- * no spead due to magnetic field will affect the jet reconstruction
- * Are then passed to the clustering algorithm
 - the same used for CaloJet
 - in the next slides the IterativeCone 0.5 is used

Once the jets are reconstructed a residual calibration can be applied

Jet pT reconstruction

Jet pT response

* At 10 GeV the dependence on the jet algorithm is:

- * < 4% for PFJets
- * < 10 % for CaloJets</p>

Jet pT response in

Jet pT resolution: PFlow Vs other techniques

Jet angular resolution: PFlow Vs other techniques

Jet energy correction

- * A 1st level correction can be applied to the PFJets in order to equalize the response in eta
- * A residual correction can be applied to bring the response to 1
 - * Only PFJets are shown in this plot
 - * See Richard Cavanaugh's talk for more details

 1. Compute MET
3. Find and mask (loosely) isolated e
With the Particle Flow techniquenthe MET can be easily computed symming up the momentum of the transverse plane

* it would be more adequate to speak about missing momentum more than missing energy in this case!

the MET can be computed before the other level objects are reconstructed

PFMET vs CaloMET

12

* ttbar events

* CaloMET has Type-1 + muon correction applied

LHC Workshop, Mumbai

Simone Gennai

PFMET Vs tcMET

* TTbar events

*

LHC Workshop, Mumbai

Simone Gennai

PFMET Vs CaloMET

* Events without real MET

Simone Gennai

27000

15.83

23.22

27000

200

LHC Workshop, Mumbai

PFMET Vs tcMET

LHC Workshop, Mumbai

Simone Gennai

Use of the PFMET to measure PFJets energy response

robustness agains systematics

* Possible source of systematic effects

- * poor modeling of the calorimeter response to hadrons
- * poor modeling of the calorimeter energy resolution
 - used to remove bad measured tracks
- poor modeling of the calorimeter energy thresholds
- reduction in the track reconstruction efficiency
- * tracks reconstruction in jets
- * jet flavor energy response dependence

PFJets response varies by less than 5% at low pT and less than 10% at high pT

* Mostly driven by calorimeter response to hadrons

Systematics: Calorimeter

* Poor modeling of the response to the hadrons

* Calibration factor varied by \sim 50%

Systematics: Calorimeter

* Poor modeling of the calorimeter energy resolution

- * used to remove bad measured tracks
- * Resolution increased and reduced by \sim 50%

Systematics: Calorimeter

* Effect of calorimeter thresholds

- * Ecal: 40 --> 120 MeV
- * cHal: 400 --> 1.2 GeV

Systematics: Tracking

* Global reduction on track reconstruction efficiency by 5%

* Bad modeling of track reconstruction in dense environment

 Taking as comparison the fast sim where effects due to dense environment are not considered

Systematics: Parton Flavor

* Jet flavor: Gluon Light quark (u,d,s) c quark b quark

Higgs invariant mass reconstruction

* qqH->tautau->muon+tau jet+ MET

* Here using Calorimeter based reconstruction

30 Events for 30 fb⁻¹ qqH (m_µ=135 GeV) 25 Z + ≥2 jets 20 15 10 5 0ò 50 100 150 200 250 300 mass [GeV]

Reconstructed mass (collinear approx.) StdCalo (VBFrelaxedCa)

Higgs invariant mass reconstruction

- * qqH->tautau->muon+tau jet+ MET
- * Here using Particle Flow based reconstruction

30 Events for 30 fb⁻¹ qqH (m_{_}=135 GeV) 25 Z + ≥2 jets 20 15 10 5 0<u>`</u> 50 100 250 300 150 200 mass [GeV]

Reconstructed mass (collinear approx.) PF (VBFrelaxed)

LHC Workshop, Mumbai

Transverse invariant mass reconstruction

- * W-> mu + neutrino sample
- * **PFMET** gives the best performance in discriminating signal Vs background

Massimo Nes Hanshelaser Masse V+ jets meeting, Max 29 Endering two extra jets)

CaloMET and CaloJets

PFMET and **PFJets**

Particle Reconstruction

- * Muons and electrons are reconstructed first
 - * Muons are taken from the collections provided by the Muon POG
 - * Electrons have a brand new reconstruction which will be documented soon
- * Charged, neutral hadrons and photons are reconstructed from the blocks as follow:
 - * A not-linked ecal cluster gives birth to a photon
 - * A not-linked hcal cluster gives birth to a neutral hadron
 - A track (not already considered as a muon or an electron) gives birth to a charged hadron
 - * Any other combination, i.e. blocks formed by more than one object, is analyzed in order to give the complete list of particles

A closer look at the algorithm

* Track-cluster link

Linking--> Blocks

Selecting photons

Proceeding with the analysis of the blocks

From the blocks to the list of particles

* For each hcal:

- compare reconstructed (and calibrated) calorimeter energy to the to the linked track momentum
- if calorimeter energy is bigger than the track momentum:
 - create a charged hadron and one additional photon or neutral hadron
- * if not:
 - simply consider the calorimeter deposit as derived from the energy deposition of the charged hadron

Photon or Neutral hadron?

- * In case an excess is found in the calorimeter energy wrt track momentum:
 - if the excess is bigger than the Ecal only energy:
 - both a photon (taking all the Ecal energy) and a neutral hadron (with the remaining excess) are created
 - each of them with the proper calibration applied
 - if the excess is less than the Ecal only energy:
 - only a photon is created

Conclusions

- the particle-flow technique aims at reconstructing and identifying all stable particles in the event
- The use of the PFlow in the jet and MET reconstruction shows superior performance wrt other techniques
 - * Jet pT resolution up to a factor 2 better
 - * MET Resolution up to 40%-50% better
- The use of redundancy among different sub-detectors ensure small sensitivity to mis-calibrations and other systematics
- * Use it in your analysis! It will surely bring large improvements!
 - * For more details follow the Tutorial on how to use the Particle Flow
- * Special thanks to: Colin, Rick, Patrick and Kostas

Cluster Seeding (HCAL)

Neutral hadron calibration

 $E_{\text{calib}} = a(E,\eta) + b(E,\eta)E_{\text{ECAL}} + c(E,\eta)E_{\text{HCAL}}$

- In order to calibrate we need to estimate the real energy of the particle
- * Estimator = max between
 - * sum of track momentum
 - * Eecal + Ehcal
- * Parameter estimation
 - * "b" and "c" from the fit
 - * "a" is chosen to minimize the Energy dependence of "b" and "c"

