Muon charge asymmetry in inclusive $pp \rightarrow W(\mu\nu) + X$ production at $\sqrt{s} = 10$ TeV.

PAS-EWK-09-003, CMS-AN 2009/054

October 26, LHC'09.

0

LHC kinematic plane

 $d\sigma_X = \sum_{ij} \int d\mathbf{x}_1 d\mathbf{x}_2 f_i(\mathbf{x}_1, \mathbf{Q}^2) f_j(\mathbf{x}_2, \mathbf{Q}^2) d\hat{\sigma}_{ij \to X}$

- For measurable rapidity range |y| < 2.5, x values remain in the range, $5 \times 10^{-4} < x < 5 \times 10^{-2}$.
- W and Z production : Leading order process is $q\bar{q} \rightarrow W/Z$, the cross-section is ~ 10 nb.

Kinematic variables and event selection

Trigger and event selection

- A Global Muon per event matched with HLT_Mu15 trigger object within a cone size of 0.015 with $|\eta| < 2.1$.
- The muon should have:
 - Associated silicon track hits ≥ 12.
 - Normailized $\chi^2/ndf < 5$.

Isolation and the Minning E_t

- Iso = Σ_{R(caloTowerⁱ, muon)<0.3} E_T^{caloTowerⁱ}, where the sum of the transverse energy of all the calo towers within a cone of radius 0.3 around the muon direction is made, (P_t^μ + Iso) > 25 GeV.
- The isolation cut :: z < 0.05, defined by z = 1 − p_T/p_{T+lso}, where p_T is the transverse momentum of the muon candidate (weakly correlated with *E_T*).
- Missing $E_t > 20$ GeV.

Selection efficiency and event yeild

	$W^+ ightarrow \mu^+ u$		$W^- ightarrow \mu^- u$	
Selection	Events	Efficiency	Events	Efficiency
Generated Events	571787		356714	
HLT-matched (($ \eta $ <2.1)	440982	0.771±0.001	291833	0.818±0.002
Muon $p_T + Iso > 25$ GeV	343180	0.778±0.001	240533	0.824±0.002
z <0.05	317012	$0.924{\pm}0.002$	222029	0.923±0.002
MET > 20 GeV	305367	$0.963 {\pm} 0.002$	216045	0.973±0.002
Total Efficiency		0.534±0.001		0.606±0.001

Data Type	Events/pb	Fraction (%)	Events/pb	Fraction(%)
$W \rightarrow \mu \nu$	2294.3±4.2	91.9±0.2	1623.2±3.5	89.8±0.2
$W \to au u$	43.1±0.7	1.7±0.03	32.9±0.6	0.018±0.03
tī	9.9±0.4	0.4±0.02	10.1±0.4	0.006±0.02
Drell-Yan	89.4±0.4	3.6±0.02	81.6±0.4	0.045±0.02
QCD	60.0±1.0	$2.4{\pm}0.04$	59.6±1.0	0.033±0.06

Э

Pseudorapidity distribution after all the selection criteria

The muon pseudorapidity distribution after all event selection ٠ criteria have been applied.Left :: μ^- ,Right :: μ^+ .

Transverse Mass Distribution

• $m_T = \sqrt{2 \cdot p_T \cdot \not\!\!{E}_T \cdot (1 - \cos(\phi))}$, ϕ is the angle between muon p_T and $\not\!\!{E}_T$.

Background estimation

If the MET and z variables are uncorrelated then the numbers of events in the signal and sidebands should be in the ratio,

$$r=\frac{N_A N_D}{N_B N_C}=1.$$

The ratio

Charge asymmetry results

æ

Efficiency ratio between μ^+ and μ^-

$$\frac{dN}{d\eta} = \mathcal{L} \cdot \frac{d\sigma}{d\eta} \cdot \epsilon_{HLT} \cdot \epsilon_{offline} \cdot \epsilon_{acceptance}.$$

э October 26, LHC'09, 12/19

< ∃ >

< < >> < <</>

The measured charge asymmetry at 10 pb^{-1} and 100 pb^{-1} of LHC luminosity

Statistical error : 4%; Acceptance : 4%; Goes down to 1.3% with 100 pb⁻¹ of LHC luminosity.

Systematic uncertainty due to trigger efficiency and charge mis-identification for muons from monte-carlo

The matching criteria used : $\Delta R(gen \mu, HLT object) < 0.015$.

14/19

The mis-identification is less than 0.1% in for muons coming from W.

CMS detector in transverse plane, showing a cosmic muon event

We can do the trigger efficiency and charge mis-identification using cosmic muon events.

After Muon transverse momentum criteria the Drell-Yan is the most dominant background.

- With 100 pb⁻¹ data, the total uncertainty is comparable to the PDF error set and therefore may begin to provide constraints on different PDF sets.
- ² The background coming from pion/kaon decay-in-flight is small , but not negligible (2.5%) in comparison with other background for $W \rightarrow \mu \nu$ event.
- We can do estimation of trigger efficiency and charge mis-identification using cosmic muon events.

October 26, LHC'09,

Back-up slides

-≣ ≯

æ

CMS detector in longitudinal plane

October 26, LHC'09. 1

19/19