

"Physics at the LHC with Jets and Missing Energy"

R. Cavanaugh

Fermi National Accelerator Laboratory & University of Illinois at Chicago

TIFR, Mumbai, India 26 October, 2009

Introduction
Jets
Jets + MET
Summary

- Jets and MET are a huge topics
 - Can not cover all in a single hour
 - Thus, I will thus just give a random smattering, being rather selective!
- Also, I would like to thank the following people who contributed slides (without knowing it! :-)
 - Nikos Varelas, Seema Sharma, Henning Flaecher, and many others...

- 1931: Cyclotron: 1 100 MeV protons & deuteron :
 - many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrino, CP violation
- 1972: Stanford Positron Electron Asymmetric Ring: 3 GeV
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV protons
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 GeV protons & antiprotons
 - W & Z vector bosons (weak nuclear force)
- 1989: Large Electron Positron Collider: 104 GeV e+ e-
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & anti-protons
 - Top quark
- 2008: Large Hadron Collider: 7 TeV protons

```
• ?
```


- 1931: Cyclotron: 1 100 MeV protons & deuteron :
 - many isotopes
- ¹⁹⁵⁴: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrino, CP violation
- 1972: Stanford Positron Electron Asymmetric Ring: 3 GeV
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV protons
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 GeV protons & antiprotons
 - W & Z vector bosons (weak nuclear force)
- 1989: Large Electron Positron Collider: 104 GeV e+ e-
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & anti-protons
 - Top quark
- ⁹ 2008: Large Hadron Collider: 7 TeV protons

```
• ?
```


ermilab

Iniversity of Illinois

- 1931: Cyclotron: 1 100 MeV protons & deuteron :
 - many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrino, CP violation
- 1972: Stanford Positron Electron Asymmetric Ring: 3 GeV
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV protons
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 GeV protons & antiprotons
 - W & Z vector bosons (weak nuclear force)
- 1989: Large Electron Positron Collider: 104 GeV e+ e-
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & anti-protons
 - ^y Top quark
- ⁹ 2008: Large Hadron Collider: 7 TeV protons

```
• ?
```

	UIC at Chica	igo
A Contraction of the second se	Magnetic Field	

- 1931: Cyclotron: 1 100 MeV protons & deuteron :
 - many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrino, CP violation
- 1972: Stanford Positron Electron Asymmetric Ring: 3 GeV
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV protons
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 GeV protons & antiprotons
 - W & Z vector bosons (weak nuclear force)
- 1989: Large Electron Positron Collider: 104 GeV e+ e-
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & anti-protons
 - Top quark
- 2008: Large Hadron Collider: 7 TeV protons

Fermilab

University of Illinois

- 1931: Cyclotron: 1 100 MeV protons & deuteron :
 - many isotopes
- 9 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrino, CP violation
- 1972: Stanford Positron Electron Asymmetric Ring: 3 GeV
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV protons
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 GeV protons & antiprotons
 - W & Z vector bosons (weak nuclear force)
- 1989: Large Electron Positron Collider: 104 GeV e+ e-
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & anti-protons
 - Top quark <
- 2008: Large Hadron Collider: 7 TeV protons

Fermilab

1 TeV

- many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrir
- 1972: Stanford Positron Electron Asyn 10 TeV
 - J/Ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV
 - **Upsilon (bottom quark)**
- 1981: Super proton Synchronton: 450 protons
 - W & Z vector bosons (weak nucle
- 1989: Large Electron Positron Collider
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & a
 - Top quark
- 2008: Large Hadron Collider: 7 TeV p

- many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrir
- 1972: Stanford Positron Electron Asyn
 - J/Ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV
 - **Upsilon (bottom quark)**
- 1981: Super proton Synchronton: 450 protons
 - W & Z vector bosons (weak nucle
- 1989: Large Electron Positron Collider
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & a
 - Top quark
- 2008: Large Hadron Collider: 7 TeV p

- many isotopes
- 1954: Bevatron: 1 GeV protons:
 - strangeness, Anti-proton, anti-neutron
- 1960: Alternating Gradient Synchroton: 33 GeV protons
 - J/ψ (charm quark), muon neutrir
- 1972: Stanford Positron Electron Asyn
 - J/ψ (charm quark), tau
- 1977: Fermilab fixed target: 400 GeV
 - Upsilon (bottom quark)
- 1981: Super proton Synchronton: 450 protons
 - W & Z vector bosons (weak nucle
- 1989: Large Electron Positron Collider
 - 3 (light) generations of matter
- 1992: Tevatron: 980 GeV protons & a
 - Top quark
- 2008: Large Hadron Collider: 7 TeV p

Fermilab

Proton-proton collisions

- See Michalangelo (beautiful) lectures
 - Or better yet, talk to him here at the conference!

Reconstructing Jets

- See My Lecture on Monday
 - Absolutely no claim to beauty, though!

- Used to detect weakly interacting particles
 - See My Lecture on Monday

Why do we study jets at hadron colliders?

- QCD Studies
 - Fragmentation functions
 - Parton Distribution Functions
 - Color/spin dynamics
 - Quark-gluon jet properties
 - Event shapes
 - Inclusive-and Multi-jet production
 - Rapidity Gaps/Diffraction
 - Production of Vector Bosons + jets
 - Study of heavy particles (e.g. top production)
- Searches for new physics
 - usually involve MET

ightarrow tests of the proton structure function $par{p}
ightarrow 2~{
m jets} + {
m X}$

- **QCD** Studies
 - **Fragmentation functions**
 - **Parton Distribution Functions**
 - Color/spin dynamics
 - Quark-gluon jet properties
 - **Event shapes**
 - **Inclusive-and Multi-jet production**
 - **Rapidity Gaps/Diffraction**
 - **Production of Vector Bosons + jets**
 - Study of heavy particles (e.g. top production)
- Searches for new physics
 - usually involve MET

Search for quark substructure:

 \rightarrow search for quark compositeness

$$par{p}
ightarrow 2 ext{ jets} + ext{X}$$

- QCD Studies
 - Fragmentation functions
 - Parton Distribution Functions
 - Color/spin dynamics
 - Quark-gluon jet properties
 - Event shapes
 - Inclusive-and Multi-jet production
 - Rapidity Gaps/Diffraction
 - Production of Vector Bosons + jets
 - Study of heavy particles (e.g. top production)
- Searches for new physics
 - usually involve MET

Study of heavy particles:

ightarrow measurements of top quark production $par{p}
ightarrow 6~{
m jets} + {
m X}$

- Final State: A number of Jets + MET
 - 2 Jets + X
 - 3 Jets + X
 - 4 Jets + X
 - 1 Jet + MET + X
 - 2 Jets + MET + X
 - 3 Jets + MET + X

- Inclusive Jets
 - From Tevatron
 - N_{jets} for 700 pb⁻¹ |y| < 0.8
 - For LHC
 - $N_{jets} / pb^{-1} |y| < 1.3$

sqrt(s)	pT > 0.5 TeV	pT > 1 TeV
2	34 (700 pb ⁻¹)	_
6	47 / pb $^{-1}$	$0.3 / pb^{-1}$
10	321 / pb ⁻¹	5 / pb ⁻¹
14	865 / pb $^{-1}$	22 / pb ⁻¹

- Dijets
 - From Tevatron
 - ~200 evts for M_{jj} > 1 TeV for 700 pb⁻¹ & |η₁|, |η₂| < 2.4
 - For LHC
 - # evts / M_{jj} / pb⁻¹ for |η₁|, |η₂| < 1.3

sqrt(s)	M_{jj} > 1 TeV	M _{jj} > 1.4 TeV	M _{jj} > 2 TeV
2	~200 (700 pb-1)		
6		8 / pb ⁻¹	1 / pb ⁻¹
10		53 / pb ⁻¹	7 / pb ⁻¹
14		138 / pb ⁻¹	22 / pb ⁻¹

LHC Probes the Terascale

10

Inclusive Jet Production

- Contact interactions create large rate at high P_T -- quick discovery possible
 - Error dominated by jet energy scale (~10%) in early running (10 pb⁻¹)
 - $\rightarrow \Delta E \sim 10\%$ not as big an effect as $\Lambda^+= 3 \text{ TeV}$ for $P_T > 1 \text{ TeV}$.
 - PDF "errors" and statistical errors (10 pb⁻¹) smaller than E scale error
- With 10 pb⁻¹ LHC can see new physics beyond Tevatron (Λ^+ < 2.7 TeV)

CMS SBM-07-001

Fermilab

University of Illinois at Chicago

Inclusive Jet Production

- Contact interactions create large rate at high P_T -- quick discovery possible
 - Error dominated by jet energy scale (~10%) in early running (10 pb⁻¹)

🗲 Fermilab

University of Illinois at Chicago

- $\rightarrow \Delta E \sim 10\%$ not as big an effect as $\Lambda^+= 3 \text{ TeV}$ for $P_T > 1 \text{ TeV}$.
- PDF "errors" and statistical errors (10 pb⁻¹) smaller than E scale error
- With 10 pb⁻¹ LHC can see new physics beyond Tevatron (Λ⁺ < 2.7 TeV)

Dijet Production

- Measure rate vs. corrected dijet mass and look for resonances.
 - Use a smooth parameterized fit or QCD prediction to model background
- Strongly produced resonances can be seen
 - Convincing signal for a 2 TeV excited quark (E6) in 100 pb⁻¹
 - Tevatron excluded up to 0.78 TeV.

CMS SBM-07-001

Dijet Production

- Measure rate vs. corrected dijet mass and look for resonances.
 - Use a smooth parameterized fit or QCD prediction to model background
- Strongly produced resonances can be seen
 - Convincing signal for a 2 TeV excited quark (E6) in 100 pb⁻¹
 - Tevatron excluded up to 0.78 TeV.

CMS SBM-07-001

- Ratios help keep systematics low
 - many effects cancel
- QCD: roughly no η preference
- Expect NP to appear at high pT
 - hence, central η

- Ratios help keep systematics low
 - many effects cancel
- QCD: roughly no η preference
- Expect NP to appear at high pT
 - hence, central η

- Ratios help keep systematics low
 - many effects cancel
- QCD: roughly no η preference
- Expect NP to appear at high pT
 - hence, central η

Dijet ϕ decorrelation

- QCD 09-003
- leading jets Δφ distribution sensitive to higher order radiation
 - w/o explicitly measuring the radiated jets -- no jet counting!
- Particle level distributions
 - Corrections are dominated by JES and jet φ resolutions

 $\Delta \phi_{dijet} = \pi$

 $\Delta \varphi_{\text{dijet}} \ll \pi$

Dijet ϕ decorrelation

- Multijets Event Topology Studies
 - Dalitz plots, angular distributions, mass, etc.
 - Reduced dependence to jet calibration
- Ratios of n-jet/(n-1)-jet cross sections
 - Probes gluon radiation effects, αs
 - Several systematics are reduced in the ratio
- A single vector boson (γ, Z, or W) in association with 0, 1, 2, 3, or more jets
 - Essentially a study of QCD multijets, using EWK probes

qq Drell-Yan: 0 Jets

qg t-channel: | Jet

higher order gg channels: 2 Jets

ersity of Illinois

at Chicago

qq Drell-Yan: I Jet

qg t-channel: 2 Jets

q

q

g ſ

Fermilab

Illinois

higher order gg channels: 3 Jets

Initial and Final State Radiation play a big role!

e, μ

 V_e, V_μ

Higher Orders

- Leading Order
- Next-to-Leading Order
 - Real Corrections = extra legs
 - Virtual Corrections = extra loops
- UV Divergences: Renomalization
 - Virtual Graphs
- IR Divergences:
 - Real and Virtual Graphs
 - Must Cancel Each Other, but non Trivial
- Loops tend to be ignored in existing Monte Carlos
 - Pythia, Alpgen, Sherpa, MadGraph, etc

Higher Order Monte Carlos

- Matrix Element calculations (AlpGen, MadGraph, Sherpa, etc):
 - Describe well separated jets configurations
 - Are "exact" at a given order
 - Run into troubles in the soft and collinear regions
 - Can't describe the internal structure of jets
- Parton Shower calculations (Pythia, Herwig, etc):
 - PS is universal; given basic hard process, PS recipe will produce reasonable parton configurations
 - Form factors ensure controlled behavior in soft and collinear region; jet evolution is well described
 - Cannot steer shower evolution much; some regions of phase space not efficiently filled, such as well separated partons
- Current State of the Art: use both!

ME to predict hard parton configuration and PS to describe evolution of jets,

 Beware double counting and holes in the phase space several ⇒ several matching methods

Fermilab

University of Illinois at Chicago

Adequate modeling important for searches involving several high pT jets

(α_s)ⁿ Law of Multijet Production [‡]Fermilab UIC University of Illinois at Chicago

CM

(α_S)ⁿ Law of Multijet Production [‡]Fermilab UIC University of Illinois at Chicago

(α_s)ⁿ Law of Multijet Production [‡]Fermilab UC University of Illinois at Chicago

CM?

Z→µµ Standard Candle

- Normalize MC to Data for low jet multiplicity Jet bins
 - Assume lepton universality
 - For W + n-jets, use

 $\rho~\equiv~\frac{\sigma(pp \rightarrow W(\rightarrow \mu\nu) + jets)}{\sigma(pp \rightarrow Z(\rightarrow \mu^+\mu^-) + jets)}$

- Reduces / Avoids Systematics due το
 - QCD Scale, PDFs (possibly), ISR/FSR, etc
- Major Syst. Become
 - Luminosity, Measurement of *R*, Uncertainty on ρ(*N_{jet}*)
 - Still requires tuning MC to Data for kinematic dists.
- 5% precision (~lumi) expected to be achieved with 1.5 fb⁻¹

Z→µµ Standard Candle

- Normalize MC to Data for low jet multiplicity Jet bins
 - Assume lepton universality
 - For W + n-jets, use

 $\rho~\equiv~\frac{\sigma(pp \rightarrow W(\rightarrow \mu \nu) + jets)}{\sigma(pp \rightarrow Z(\rightarrow \mu^+ \mu^-) + jets)}$

- Reduces / Avoids Systematics due το
 - QCD Scale, PDFs (possibly), ISR/FSR, etc
- Major Syst. Become
 - Luminosity, Measurement of *R*, Uncertainty on ρ(*N_{jet}*)
 - Still requires tuning MC to Data for kinematic dists.
- 5% precision (~lumi) expected to be achieved with 1.5 fb⁻¹

3

...and is sometimes known as "Berends scaling"

CMS Preliminary

 \sqrt{s} =10 TeV, L=100 pb¹

- Used at Tevatron
- →µμ) ratic Top discovery N(→µv)/Z((not responsible for discovery, but 2 provided additional evidence) track-jet multiplicity
- Now adapted to CMS (EWK 09-006)

Jet Mismeasurements and MET UIC University of Illino at Chicago

Corr Jet

Corr Jet

Fake MET

- But, life is difficult with MET:
 - Catastrophic Jet Energy
 mismeasurement
 - Large MET in direction of mismeasured Jet

- jets are promoted above jet counting threshold due to non-linear JES corrections
- Leads to deviation from Berend's scaling 23

One Solution...

- Central Jets should have same Jet Energy Mismeaurements as Forward Jets (similar Detectors)
 - Form ratio $R_{Nj} = N_j(Central) / [N_j(Central) + N_j(Forward)]$
- Mismeasurements cancel in the ratio
 - more confident extrapolation from SM region to NP region
 - example of "self-healing" type of observable

Motivating Themes for SUSY

- Naturally leads to Electroweak symmetry breaking
- Avoids fine tuning of SM
- Viable Dark Matter Candidate (R-parity conservation)

Fermilab

G-1

University of Illinoisat Chicago

- Gauge Coupling Unification
- Gravity naturally unifies (roughly) too
- Pre-requisite of String Theory

• A symmetry between fermions and bosons

SM Particles	SUSY Particles			
quarks: q	q	squarks: \tilde{q}		
leptons: <i>l</i>	l	sleptons: \tilde{l}		
gluons: g	g	gluino: \tilde{g}		
charged weak boson: W^{\pm}	W^{\pm}	Wino: \widetilde{W}^{\pm} $\sim \pm$		
Higgs: H ⁰	H^{\pm}	charged higgsino: \widetilde{H}^{\pm} $\int \chi_{1,2}$ chargino		
	$h^{\circ}, A^{\circ}, H^{\circ}$	neutral higgsino: $\tilde{h}^{\circ}, \tilde{A}^{\circ}, \qquad I \qquad H^{\circ}$ higgsino		
neutral weak boson: Z°	Z°	Zino: \widetilde{Z}^{0} $\widetilde{\chi}_{1,2,3,4}^{0}$ neutralino		
photon: γ	γ	photino: $\tilde{\gamma}$		

- Generally assume LSP is stable (R-parity conservation)
- SUSY must be broken!
 - mechanism is unknown ⇒ many new free parameters!
- CMSSM (basically mSUGRA):
 - Supergravity inspired model, 5 free parameters:
 - m₀, m_{1/2}, A₀, tan β, Sign(μ)

Chargino & neutralino Production

• Most involve only weak couplings

Fermilab

at Chicago

Iniversity of Illinois

Squark & gluino production

- Involve only the strong coupling
- LHC initial state: quarks and gluons!
 - squark & gluino production dominate over chargino & neutralino production
- Thus: Lots of Jets and MET in final state for SUSY events!!

llinois

What does SUSY Look like?

- Complex decays chains
 - High P_T jets (q, g)
 - Leptons (χ , I, W, Z)
 - MET (LSP)

🚰 Fermilab

University of Illinois at Chicago

 $(\mu^2 + m_a^2)$

m_{1/2}

m

18

Generic Signature of many New Physics Models!

What does SUSY Look like?

 $\tilde{\chi_1^{\pm}}$

- Complex decays chains
 - High P_T jets (q, g)
 - Leptons (χ , I, W, Z)
 - MET (LSP)

Generic Signature of many New Physics Models!

μ

 $\tilde{\chi}_1^0$

Fermilab

University of Illinois at Chicago

Cleaning Fake MET

- Real MET is typically "isolated"
 - i.e. does not point in direction of a jet
- Fake MET typically points in direction of 2nd leading jet

Cleaning Fake MET

δ≬(P^{mens},

,jet2) (deg)

Cleaning Fake MET

- Selection Criteria
 - MET>200 GeV + Clean-up
 - \geq 3 jets:
 - E_T> 180, 110, 30 GeV
 - Indirect lepton veto
 - Cuts on $\Delta \phi$ between jets & MET
 - $H_T/M_{eff} = E_{T1} + E_{T2} + E_{T3} + MET > 500 \text{ GeV}$
- Results:
 - LM1 efficiency is 13%, S/B ~ 26 :

Expected number of events for 1 fb⁻¹ CMS PTDR

Signal	$t\bar{t}$	single t	$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	(W/Z,WW/ZZ/ZW) + jets	QCD
6319	53.9	2.6	48	33	107

• ~6 pb⁻¹ for 5 discovery

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

$$\alpha_{\rm T} = \frac{E_{\rm T}^{j2}}{\sqrt{2E_{\rm T}^{j1}E_{\rm T}^{j2}(1 - \cos\Delta\phi)}} = \frac{\sqrt{E_{\rm T}^{j2}/E_{\rm T}^{j1}}}{\sqrt{2(1 - \cos\Delta\phi)}}$$

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

$$\alpha_{\rm T} = \frac{E_{\rm T}^{j2}}{\sqrt{2E_{\rm T}^{j1}E_{\rm T}^{j2}(1 - \cos\Delta\phi)}} = \frac{\sqrt{E_{\rm T}^{j2}/E_{\rm T}^{j1}}}{\sqrt{2(1 - \cos\Delta\phi)}}$$

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

$$\alpha_{\rm T} = \frac{E_{\rm T}^{\rm j2}}{\sqrt{2E_{\rm T}^{\rm j1}E_{\rm T}^{\rm j2}(1-\cos\Delta\phi)}} = \frac{\sqrt{E_{\rm T}^{\rm j2}/E_{\rm T}^{\rm j1}}}{\sqrt{2(1-\cos\Delta\phi)}}$$

- MET = Rubbish bin of detector
 - Wrought with pain and suffering
- ...so, try to avoid using it

$$\alpha_{\rm T} = \frac{E_{\rm T}^{j2}}{\sqrt{2E_{\rm T}^{j1}E_{\rm T}^{j2}(1 - \cos\Delta\phi)}} = \frac{\sqrt{E_{\rm T}^{j2}/E_{\rm T}^{j1}}}{\sqrt{2(1 - \cos\Delta\phi)}}$$

Exclusive N-Jets + MET

- One can indeed generalize to N-Jets
 - basic idea: combine N-Jets into effective 2-Jet system
 - Formula looks a little bit different, but idea is same

- One can indeed generalize to N-Jets
 - basic idea: combine N-Jets into effective 2-Jet system
 - Formula looks a little bit different, but idea is same

$$\alpha_{\rm T} = \frac{1}{2} \frac{H_{\rm T} - \Delta H_{\rm T}}{M_{\rm T}} = \frac{1}{2} \frac{H_{\rm T} - \Delta H_{\rm T}}{\sqrt{H_{\rm T}^2 - (H_{\rm T}^{\rm miss})^2}} = \frac{1}{2} \frac{1 - \Delta H_{\rm T}/H_{\rm T}}{\sqrt{1 - (H_{\rm T}^{\rm miss}/H_{\rm T})^2}}$$

- One can indeed generalize to N-Jets
 - basic idea: combine N-Jets into effective 2-Jet system
 - Formula looks a little bit different, but idea is same

$$\alpha_{\rm T} = \frac{1}{2} \frac{H_{\rm T} - \Delta H_{\rm T}}{M_{\rm T}} = \frac{1}{2} \frac{H_{\rm T} - \Delta H_{\rm T}}{\sqrt{H_{\rm T}^2 - (H_{\rm T}^{\rm miss})^2}} = \frac{1}{2} \frac{1 - \Delta H_{\rm T}/H_{\rm T}}{\sqrt{1 - (H_{\rm T}^{\rm miss}/H_{\rm T})^2}}$$

Testing Robustness

- Grossly distort Jet energies and see what happens...
 - Effective Mass (MHT) is dramatically affected!

Testing Robustness

- Grossly distort Jet energies and see what happens...
 - Effective Mass (MHT) is dramatically affected!
 - α_T is very robust against badly measured jets!

ABCD/Matrix method

Try to estimate bkg from data: - LM0 - LM1 tř W Z QCD MadGraph **CMS** preliminary Most signal is in "C" **Backgrounds are in** • "A", "D", "B" B D Assume that for bkg "A" / "D" = "C" / "B" ഹ ö С Α valid if $\alpha_T \& \eta$ are ē õ ю uncorrelated 10⁶ ¹dq 00f \ <u></u>dd 00f \ <u></u>dd 00f \ <u></u> events / 0.05 / 100 10⁵ $N_{\rm pred}^{\rm bkg}(\alpha_{\rm T} > 0.55, |\eta| < 2)$ 10⁴ **CMS** preliminary $= R_{\alpha T}(0.55, |\eta| > 2) \times$ 10^{3} $N_{\rm meas}^{\rm bkg}(\alpha_{\rm T} < 0.55, |\eta| < 2)$ orororerosc 10 ----- I M1 W ----- Z – QCD MadGraph

data	background region	estimated	measured	
background	2 < eta < 3	42+-17 (9 MC)	40 +- 6 (4 MC)	
background (mad)	2 < eta < 3	40 +-15 (9 MC)	39 +- 6 (3) MC	

2.5 In leading jet

3

2

1.5

0.5

"Non-QCD" Background

- Large MET and ≥ *n* Jets expected from
 - $Z(\rightarrow vv) + \ge n$ jets
- Can derive from data using
 - $Z(\rightarrow \mu\mu) + \ge n$ jets
 - $\mathbf{Y} + \ge n$ jets

 $Z(\rightarrow \mu \mu) + \ge n$ jetsEWK 08-006 $\gamma + \ge n$ jetsSUS 08-002

Sensitivity to Discover CMSSM Generation of University of Illinois Control of University of Illinois Control of University of Illinois Control of Control of University of Illinois Control of C

• Inclusive Jets and MET signature most sensitive at LHC

- Recent global fits of CMSSM to all experimental data indirectly constrain the model
 - The CMSSM is an early Discovery / Exclusion Model !

Summary

- Many very interesting topics I did not cover:
 - Extra Dimensions (Monojets)
 - Black holes (Jets, MET, leptons, everything)
 - Heavy Stable Charged Particles ("Monojet")
- There is an exciting Menu of Jets & MET physics at the LHC
 - Jets bread & butter physics...lots of QCD!!
 - do we understand the SM at Terascale?
 - Jets & MET searches not easy...lots of QCD!!
 - but most sensitivity to many NP models!
 - Early discoveries possible! (with understood data, of course ;-)

Backups

Monojets & Single Photons

- ADD Large Extra Dimensions
 - via Real Graviton Production
- Very Simple Topology:
 - monojet / photon back-to-back and balancing MET

- Selection
 - lepton veto,
 - large Jet/Photon pT (> 400 GeV), large MET (> 400 GeV)
 - MET back-to-back with Jet / photon
- Main backgrounds (normalize with Standard Candles)
 - W(→lv)+Jet
 - Z(→vv)+Jet
- Discoverable shortly after 100 pb-1

$M_{\rm D}/n$	n = 2	n = 3	n = 4	n = 5	n = 6
$M_D = 1.0 \; {\rm TeV}$	$0.21 \ {\rm fb}^{-1}$	$0.16 {\rm fb}^{-1}$	$0.14 {{\rm fb}^{-1}}$	$0.15~{\rm fb}^{-1}$	$0.15 \ {\rm fb}^{-1}$
$M_D = 1.5 \; {\rm TeV}$	$0.83~{\rm fb}^{-1}$	$0.59~{\rm fb}^{-1}$	$0.56~{\rm fb}^{-1}$	$0.61~{\rm fb}^{-1}$	$0.59~{ m fb}^{-1}$
$M_D=2.0\;{\rm TeV}$	$2.8~{ m fb}^{-1}$	$2.1~{\rm fb}^{-1}$	$1.9 \ {\rm fb}^{-1}$	$2.1 ~{\rm fb}^{-1}$	$2.3~{ m fb}^{-1}$
$M_D=2.5\;{\rm TeV}$	$9.9~{ m fb}^{-1}$	$8.2 \ {\rm fb}^{-1}$	$8.7~{ m fb}^{-1}$	$9.4~{\rm fb}^{-1}$	$10.9~{ m fb}^{-1}$
$M_D=3.0~{\rm TeV}$	$47.8~{\rm fb}^{-1}$	$46.4~{\rm fb}^{-1}$	$64.4~{\rm fb}^{-1}$	$100.8~{\rm fb}^{-1}$	$261.2~{\rm fb}^{-1}$
$M_D=3.5\;{\rm TeV}$	5 σ discovery not possible anymore				

🚰 Fermilab

University of Illinois at Chicago

LHC parton kinematics 10⁹ $x_{1,2} = (M/14 \text{ TeV}) \exp(\pm y)$ 10⁸ Q = MM = 10 TeV10⁷ 10⁶ M = 1 TeV10⁵ Q^2 (GeV²) 10⁴ M = 100 GeV Tevatron 10³ LHC 2 2 .0 6 **y** = 6 10² M = 10 GeVfixed 10¹ HERA target 10⁰ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10⁻⁷

Х

Parton Distribution Functions

- Typically, sea and/or gluon interactions at low-x dominate production rates at the LHC
- At Q² ≈ M²(W) the sea is driven by the gluon (via gluon splitting)

Jet pT spectra

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a_u} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a_d} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a_e} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m_Q^2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m_L^2} \widetilde{L} - \widetilde{\overline{u}} \mathbf{m_u^2} \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m_d^2} \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m_e^2} \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}).$$

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

4 additional parameters (gravity inspired)

- m₀, m_{1/2}, A₀, tan β, Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \underbrace{M_3 \tilde{g} \tilde{g}}_{\text{soft}} + \underbrace{M_2 \tilde{W} \tilde{W}}_{\text{loc}} + \underbrace{M_1 \tilde{B} \tilde{B}}_{\text{loc}} + \text{c.c.} \Big) \\ - \left(\widetilde{u} \mathbf{a_u} \widetilde{Q} H_u - \widetilde{d} \mathbf{a_d} \widetilde{Q} H_d - \widetilde{e} \mathbf{a_e} \widetilde{L} H_d + \text{c.c.} \right) \\ - \widetilde{Q}^{\dagger} \mathbf{m_Q} \underbrace{Q}_{\text{loc}} - \underline{L} \underbrace{m_L}_{\text{loc}} d\mathbf{m_u^2} \widetilde{u}^{\dagger} - \widetilde{d} \mathbf{m_d^2} \widetilde{d}^{\dagger} - \widetilde{e} \mathbf{m_e^2} \widetilde{e}^{\dagger} \\ - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}) \,.$$

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

4 additional parameters (gravity inspired)

- m₀, m_{1/2}, A₀, tan β, Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + \text{c.c.} \right) - \left(\tilde{i} \left(\mathbf{a_u} \tilde{\phi} H_u - \tilde{i} \left(\mathbf{a_d} \tilde{\phi} H_d - \tilde{i} \left(\mathbf{a_e} \tilde{I} \right) H_d + \text{c.c.} \right) \right) - \tilde{Q}^{\dagger} \mathbf{m}^2 \tilde{\phi} - \tilde{L}^{\dagger} \mathbf{m}^2 \tilde{I} - \tilde{u} \mathbf{m}^2_{\mathbf{u}} \tilde{u}^{\dagger} - \tilde{d} \mathbf{m}^2_{\mathbf{d}} \tilde{d}^{\dagger} - \tilde{e} \mathbf{m}^2_{\mathbf{e}} \tilde{e}^{\dagger} - m_{H_u}^2 \mathbf{n}^2 \mathbf{m}^2_{\mathbf{u}} \mathbf{n}^2_{\mathbf{u}} \mathbf{m}^2_{\mathbf{u}} \mathbf{n}^2_{\mathbf{u}} - \tilde{d} \mathbf{m}^2_{\mathbf{d}} \tilde{d}^{\dagger} - \tilde{e} \mathbf{m}^2_{\mathbf{e}} \tilde{e}^{\dagger} \\- m_{H_u}^2 \mathbf{m}^2_{\mathbf{u}} \mathbf{m}^2_{\mathbf{u}} \mathbf{n}^2_{\mathbf{u}} \mathbf{n}^2_{\mathbf{u}} \mathbf{n}^2_{\mathbf{u}} - (bH_u H_d + \text{c.c.}) .$$

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

```
4 additional parameters (gravity inspired)
```

- m_0 , $m_{1/2}$, A_0 , tan β , Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

```
4 additional parameters (gravity inspired)
```

- m₀, m_{1/2}, A₀, tan β, Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{u} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_1 \stackrel{\widetilde{\mathcal{I}}_{\mathbf{u}}}{\longrightarrow} \widetilde{Q} H_1 \stackrel{\widetilde{\mathcal{I}}_{\mathbf{u}}}{\longrightarrow} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) + \mathbf{Higgs masses} - \widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - L^{\dagger} \mathbf{m}_{\mathbf{L}}^2 L - \widetilde{u} \mathbf{m}_{\mathbf{u}}^2 \widetilde{u}^{\dagger} - \widetilde{d} \mathbf{m}_{\mathbf{d}}^2 \widetilde{d}^{\dagger} - \widetilde{e} \mathbf{m}_{\mathbf{e}}^2 \widetilde{e}^{\dagger} - m_{H_v}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_v H_d + \text{c.c.}) .$$

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

4 additional parameters (gravity inspired)

- m_0 , $m_{1/2}$, A_0 , tan β , Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

- Supersymmetric particles not observed experimentally
 - SUSY must be broken (softly)!

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \text{c.c.} \right) - \left(\widetilde{\overline{u}} \mathbf{a_u} \widetilde{Q} H_u - \widetilde{\overline{d}} \mathbf{a_d} \widetilde{Q} H_d - \widetilde{\overline{e}} \mathbf{a_e} \widetilde{L} H_d + \text{c.c.} \right) - \widetilde{Q}^{\dagger} \mathbf{m_Q^2} \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m_L^2} \widetilde{L} - \widetilde{\overline{u}} \mathbf{m_u^2} \widetilde{\overline{u}}^{\dagger} - \widetilde{\overline{d}} \mathbf{m_d^2} \widetilde{\overline{d}}^{\dagger} - \widetilde{\overline{e}} \mathbf{m_e^2} \widetilde{\overline{e}}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u H_d + \text{c.c.}).$$

- Mechanism is unknown ⇒ many new free parameters
 - MSSM: > 100 additional parameters
 - Pheno. Viable: < 20 additional parameters
 - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
 - Defined at the Soft Scale!!
 - CMSSM:

4 additional parameters (gravity inspired)

- m₀, m_{1/2}, A₀, tan β, Sign(μ)
- Defined at the GUT Scale!!
- Others!

23 April, 2008

Inclusive Jet Cross-section

Background Est. via QCD Template Events

🦉 候 University of

🖙 Fermilah

BRISTOL

- Top phenomenology
- All hadronic signatures
- Dealing with backgrounds
- Sensitivity: EXO 09-002

