

PAT Data & Cleaning

Benedikt Hegner

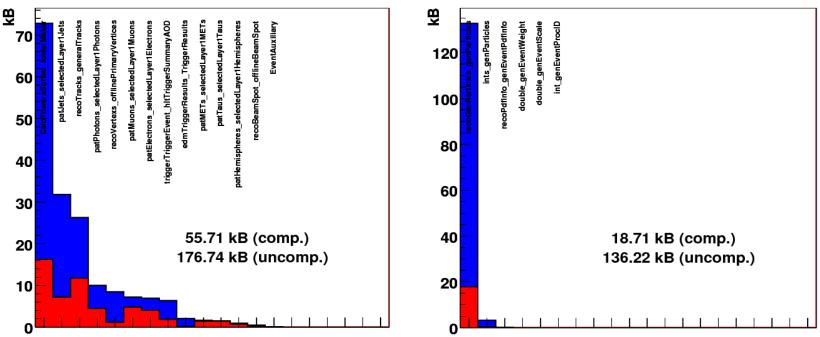
Mumbai, 27.10.2009

- PAT data
- PAT config tools
- PAT cleaning

PAT data

- A few remarks on the role of PAT and PAT data
- AOD and RECO are data tiers with a defined *static* content
- PAT has a *flexible* content
- PAT has a *flexible* workflow
- So once you reach the PAT step you make *choices* about what you consider important *for your physics* use case

or in CMS slang: *PAT is not a data tier*

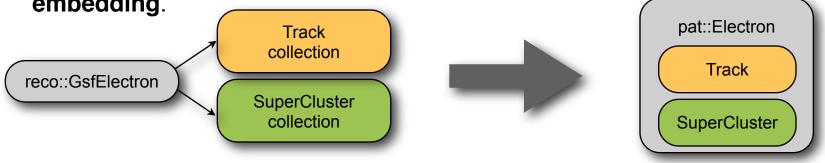

- Today we learn about how to adapt PAT to your physics and what the choices are you can make.
- Making the choices is still up to you though! :-)

PAT Samples

- One choice is to only store what is relevant for your (or your group's) analyses
- To adapt the output of PAT to what you actually need there exist many tools
- One important benchmark is always the output size

> edmEventSize -a -v -p myEventSize.ps -s myEvtSize.root inputFile.root

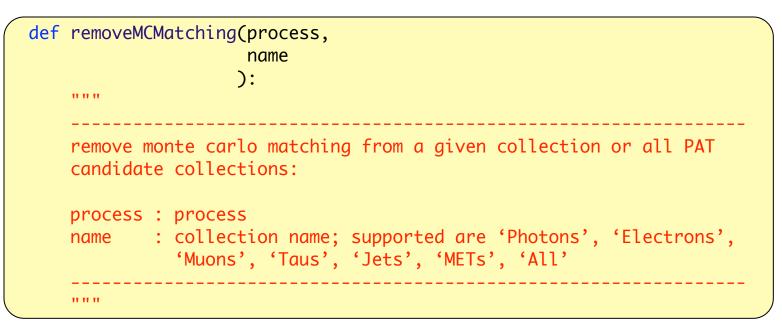
SWGuidePATEventSize


- A more detailed breakdown is available via diskSize.pl
- Give it a try! It is however an expert tool so the output is not always easy to interpret Collection
 items/event kb/event kb/item plot %

Collection	items/event	kb/event	kb/item	plot %
recoGenParticles_genParticlesHLT	766.55	16.18	0.02	29.3%
CaloTowersSorted_towerMakerREC0	440.02	13.74	0.03	24.9%
recoTracks_generalTracksREC0	105.41	10.46	0.10	19.0%
patJets_selectedLayer1JetsTEST	6.38	6.05	0.95	11.0%
patElectrons_selectedLayer1ElectronsTEST	1.26	3.09	2.45	5.6%
patPhotons_selectedLayer1PhotonsTEST	2.80	2.97	1.06	5.4%
patMuons_selectedLayer1MuonsTEST	1.41	1.60	1.13	2.9%
recoVertexs_offlinePrimaryVerticesREC0	1.07	0.70	0.66	1.3%
patMETs_selectedLayer1METsTEST	1.00	0.22	0.22	0.4%
patTaus_selectedLayer1TausTEST	0.38	0.07	0.18	0.1%
patHemispheres_selectedLayer1HemispheresTEST	2.00	0.06	0.03	0.1%
recoPdfInfo_genEventPdfInfoHLT	1.00	0.02	0.02	0.0%
recoBeamSpot_offlineBeamSpotRECO	1.00	0.01	0.01	0.0%
triggerTriggerEvent_hltTriggerSummaryA0DHLT	1.00	0.00	0.00	0.0%
int_genEventProcIDTEST	1.00	0.00	0.00	0.0%
ints_genParticlesHLT	1.00	0.00	0.00	0.0%
double_genEventScaleHLT	1.00	0.00	0.00	0.0%
edmTriggerResults_TriggerResultsHLT	1.00	0.00	0.00	0.0%
double_genEventWeightHLT	1.00	0.00	0.00	0.0%
EventMetaData + EventHistory	1.00	0.11	0.11	0.2%

Embedding can help you on size

- Let's consider the following use case:
 - You are interested in the super cluster and the track of the few electrons that pass your quality criteria
 - To do this you need to keep the full collection of super clusters and tracks
 - Your event size is dominated by this
 - What now?
- PAT solution: on creating the PAT object you can copy over super cluster and track into the electron and throw the rest away. That's called embedding.


• Whether the pat::Electron still has a reference or a copy of the object is transparent to the analysis code

Tools to change the PAT workflow

- There are many standard cases where people want to add/drop/ change certain parts from the default PAT. We support it with a lot of config tools : SWGuidePATTools
- I will only give some examples here, e.g.:

• Note: all other MC related parts are also taken out from the sequence. *Essential* for real data.

 To remove all parts which rely on information only present in RECO and not in AOD

def	<pre>restrictInputToAOD(process,</pre>
	remove pat object production steps which rely on RECO event content:
	<pre>process : process name : list of collection names; supported are 'Photons',</pre>

• Note: add this tool to your config when running on AOD/AODSIM

• Tool to add alternative jet collections to the event output:

```
def addJetCollection(process,
    jetCollection,
    postfixLabel,
    doJTA = True,
    doBTagging = True,
    jetCorrLabel = None,
    doType1MET = True,
    doL1Cleaning = True,
    doL1Cleaning = True,
    doL1Counters = False,
    genJetCollection = cms.InputTag("aColl")
    ):
```

- All algorithms by JetMET are supported
- All types like calo, PF, JPT are supported
- Each new jet collection can be accompanied by a new MET collection at the user's will

• Tool to change the default jet collection in the event output

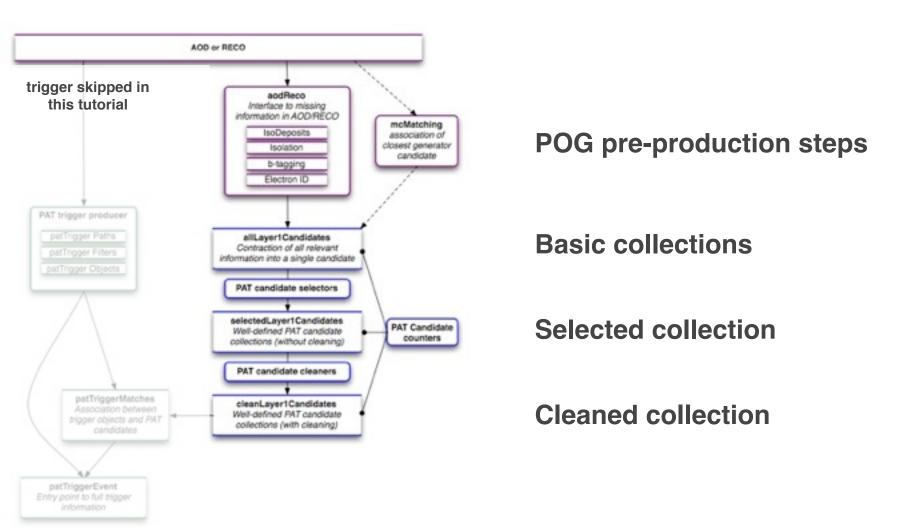
```
def switchJetCollection(process,
    jetCollection,
    doJTA = True,
    doBTagging = True,
    jetCorrLabel = None,
    doType1MET = True,
    genJetCollection = cms.InputTag("aColl")
):
```

• **Note:** when using addJetCollection and switchJetCollection in one cfg file use addJetCollection first.

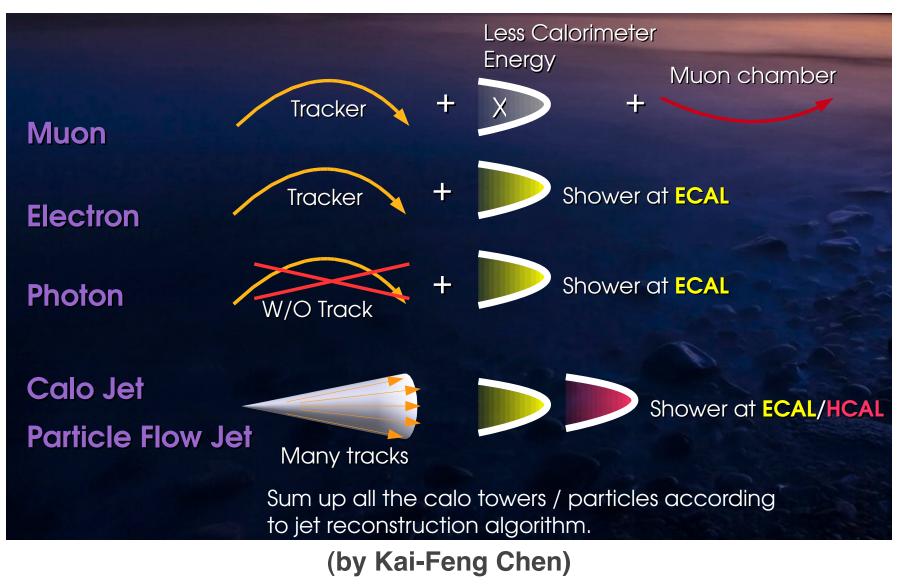
 To change the input collections for PAT from classic reco to particle flow objects:

```
# Configure PAT to use PF2PAT instead of AOD sources
from PhysicsTools.PatAlgos.tools.pfTools import *
usePF2PAT(process)
process.p = cms.Path( process.patDefaultSequence )
```

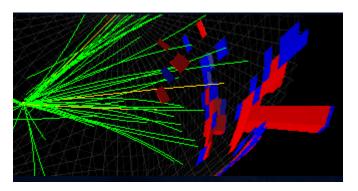
• Note: Objects, which are not yet supported by particle flow will remain as reco objects.



Cleaning

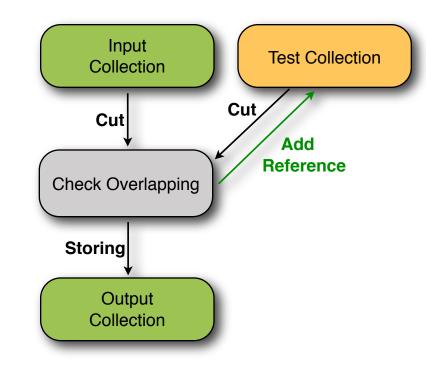

The PAT workflow

Have a look at SWGuidePATWorkflow


Overlap in Reconstruction

Cleaning as Disambiguation

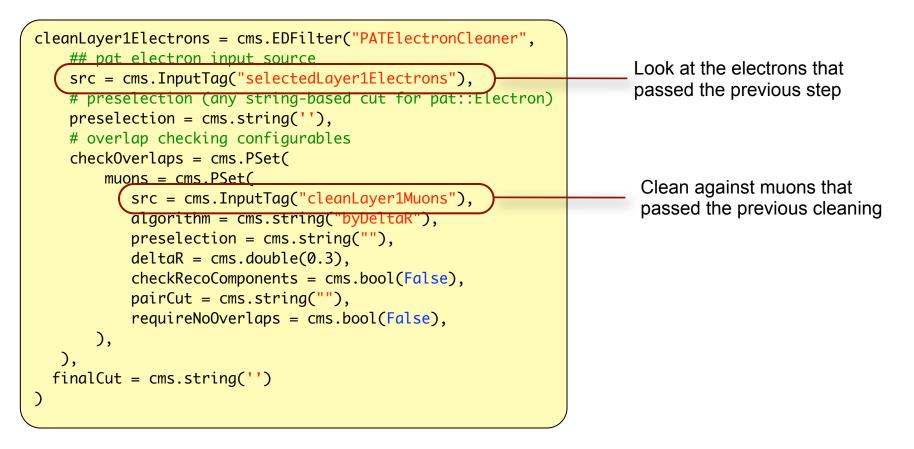
Simple example: energy deposit in ECAL


- Can form a photon
- If it matched to a track forms an electron
- run through jet algorithms forms a jet

Cleaning consists of disambiguation

- It is *analysis dependent*; depends on what is considered as electron, jet, ...
- The PAT provides *tools* to disambiguate <u>it does not choose for you!</u>

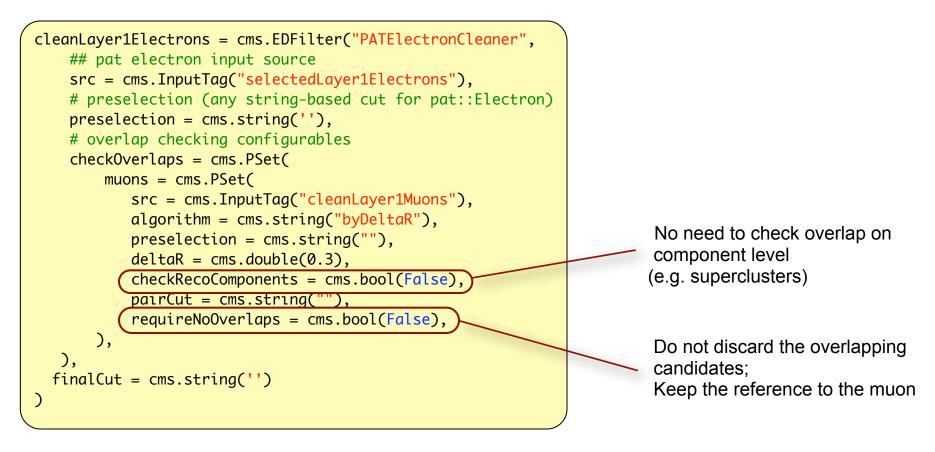
- Basically the steps in our cleaning modules are the following:
 - read in the input collection and the collections to test against
 - Apply generic cuts to both collections
 - Check for overlaps
 - Overlapping objects can be kept or discarded
 - Store reference to overlapping objects in test collection to input collection (*flagging*)
 - Apply generic cuts to input collection before storing the result


Default Cleaning

- Default configurations in PAT (note: the right settings are very analysis specific)
 - In general no pre-selection nor final cut
 - **Muons**: considered clean (no selection, no x-cleaning)
 - Electrons: clean against muons that overlap by deltaR <0.3 (add reference to electrons)
 - Photons: clean against electrons with the same supercluster seed (discard photons)
 - Taus: only taus that pass the discriminator by isolation; check overlaps in deltaR (<0.3) with electrons and muons (add reference to taus)
 - Jets: clean against other collections by deltaR (<0.5); also against tracker isolated electrons [deltaR < 0.3; track-lso<3, pT> 10 GeV] (reference with label "tklsoElectrons").




```
cleanLayer1Electrons = cms.EDFilter("PATElectronCleaner",
    ## pat electron input source
    src = cms.InputTag("selectedLayer1Electrons"),
    # preselection (any string-based cut for pat::Electron)
   preselection = cms.string(''),
    # overlap checking configurables
    checkOverlaps = cms.PSet(
        muons = cms.PSet(
           src = cms.InputTag("cleanLayer1Muons"),
           algorithm = cms.string("byDeltaR"),
           preselection = cms.string(""),
           deltaR = cms.double(0.3),
           checkRecoComponents = cms.bool(False),
           pairCut = cms.string(""),
           requireNoOverlaps = cms.bool(False),
       ),
   ),
 finalCut = cms.string('')
```



How to handle overlap in your code

- Result of cleaning is available directly from objects: bool hasOverlap(string& label)
- Checks if there was any overlap with collection named *label.*, e.g.: myObject.hasOverlap("muons")
- Full list of collection labels that found in "overlap checks": vector<string>& overlapLabels()
- Get the list of items which overlap: CandidatePtrVector& overlaps(string& label)
- Something to try out yourself can be found at SWGuidePATCleaningExercises

For information on support have a look at SWGuidePAT

Support

In this section you can find the links to a all kind of support, which you might want to make use of. The Starting Point for any question or request might be the <u>Physics Tools HN</u>. In the first place more people than you might have the same question as you and may profit from the public answer. Moreover people might have had a similar question already before and a query of the list might already be of help.

PAT core developers:

Find a list of the most important developers below:

Show 💽

POG contacts:

Find a list of POG contact persons below:

Show 💽

PAG contacts:

Find a list of PAG contact persons below:

Show 💌

- Tutorials
- Hypernews
- Community
- POG/PAG contacts
- Developers

- SWGuidePAT Main documentation page
- SWGuidePATRecipes Information about releases
- SWGuidePATExamples Tutorials and examples
- SWGuidePATDataFormats pat::Candidate description
- SWGuidePATConfiguration Module configuration
- SWGuidePATEventSize Tools for event size estimate
- SWGuidePATWorkflow PAT workflow description
- SWGuidePATTools Description of workflow tools

- PAT is not a static instance of objects. It is flexible in many aspects and supports modifications/adaptions to content and workflow
- The cleaning layer is a versatile and highly configurable tool
- PAT config tools is a field which will get extended more in the next few months.
- PAT does not relieve you from using your brain on what you want to do, but it makes it easier once you know what you want.
- All developers are happy to receive feedback/requests/hints for further developments - in the end we create the tools for you

That's all :-)