Drell-Yan study in CMS for 100 pb⁻¹ at 10 TeV

Monika Jindal K.Mazumdar, D. Bourilkov , J.B. Singh

Motivation to study Drell-Yan process (pp $\rightarrow Z/\gamma^*$ ->l+l-)

- LEP and Tevatron experiments have established Electroweak part of Standard Model (SM) very well.
- Confirmation of SM will be done at LHC using theoretically well- understood processes like, Drell-Yan events.
- Study of the new Physics at LHC requires the accurate measurement of Standard Model processes (like DY) which pose as background to many new physics searches e.g Z' → resonance structure at high invariant mass, so needs to be estimated correctly.
- Lepton pair + missing energy is also signature of new physics.

Generation Information of data samples analyzed

Data	Events	Production	Filter Efficiency	effective	Scaling Factor
		cross-section(pb)		cross-section(pb)	
$\mathbb{Z} \to \mu^+ \mu^- (\text{Mll} > 20.)$	1296192	1944.0	1.0	1944.0	0.15
DY (6 < Mll < 40.)	230582	12900	0.309	2339.8	1.73
W+Jets	9494588	40000.0	0.45	40000	0.43
TTbar+Jets	927345	317.0	0.33	317.0	0.03
$Z \rightarrow \tau \tau$	1014480	1944.0	1.0	1944.0	0.19
InclusiveMuPt15	6246161	5.091×10 ⁸	0.000239	121675.0	1.95 X
InclusivePPMuX	5279540	5.156×10^{7}	0.002305	11884.58×10^{4}	2251.DX
QCD20-30	11377053	4.97×10^{8}	0.0041	2.0377×10^{6}	17.8
QCD30-50	11229012	9.177×10^{7}	0.0061	5.6×10^{5}	5.1
QCD50-80	12905363	1.165×10^{7}	0.014	1.63×10^{5}	5.6
QCD80-120	840244	1.547×10^{6}	0.0227	3.51×10^{4}	4.14
QCD120-170	328590	2.492×10^{5}	0.0282	7.03×10^{3}	2.2
QCD170	464357	$6.203 imes 10^4$	0.58	22.0×10^{4}	0.47
WW	204305	44.8	1.0	44.8	0.022
ZZ	199455	7.1	1.0	7.1	0.004
WZ	248236	32.4	1.0	32.4	0.013

- → InclusivePPMuX has large scaling factor for 100 pb ⁻¹ and InclusiveMuPt15 has large pt cut on muons (pt > 15 GeV).
- QCD samples in different pt hat bins have been merged after normalization 10/25/2009
 LHC Physcis workshop, 09

- Filter (implemented in PAT) used to select events with atleast two muons:
- ✓ Module used to select two muon events

minLayer1Muons = cms.EDFilter("PATMuonMinFilter", src = cms.InputTag("selectedLayer1Muons"), minNumber = cms.uint32(2)

	L L N	/
Data	Events passing 2 muon filter	e
$Z \rightarrow \mu^+ \mu^-$ with CKIN(1) > 20.	627642	0.484
DY with $6 < Mll < 40$	135445	0.587
W+Jets	404720	0.043
TTbar+Jets	283465	0.306
$Z \rightarrow \tau \tau$	45781	0.045
QCD20-30	1224066	0.138
QCD30-50	3240014	0.30
QCD50-80	1116309	0.37
QCD80-120	371973	0.44
QCD120-170	166858	0.51
QCD170-up	271024	0.58
WW	22065	0.108
ZZ	30716	0.154
WZ	21968	0.123

Online Selection:

- > Single Muon Trigger : HLT_Mu9 (single muon with pt > 9 GeV)
- Double Muon Trigger : HLT_DoubleMu3 (2 muons pT > 3 GeV)
- > OR of single muon and dimuon trigger has better signal efficiency rather than individual one.
- > Events passing OR of two triggers have been selected.

Efficiency: Signal = 91%, Ztautau = 34%, Wjets=46%, ttjets = 54%, QCD = 23%

Offline Selections:

1. There must be atleast two global muons in the event.

Invariant mass of dimuon system after trigger and 2 muon selection. QCD is very dominating in the low mass region.

10/25/2009

pt of both leading muons > 10 GeV and both muons should be in detector acceptance region |η| < 2.4</p>

Since the muons coming from heavy meson decays in QCD will be relatively soft. so a pt cut > 10 GeV is quite effective in reducing a large fraction of QCD

Efficiency of pt > 10 GeV and $|\eta| < 2.4$ cut : Signal = 81% , QCD = 4% , Wjets = 8% 10/25/2009 LHC Physcis workshop, 09

Muon ID selection : (recommended by Muon POG for selecting good muon tracks)

- ✓ Normalized chi2 of both leading muons < 10.
- ✓ Number of valid hits > 11.

For muons coming from signal, the transverse impact parameter is expected to be very small whereas for the muons coming from decays in flight muons in QCD, it will be quite large.

Isolation Condition (Tracker based)

Comparison of Relative and absolute tracker isolation variable in two different cone sizes 0.3 and 0.4

- > Relative Isolation variable is defined as $\sum pt/pt_{\mu}$ and absolute isolation variable is $\sum pt$ of tracks in a given cone.
 - For a given signal efficiency, relative isolation variable has more background rejection as compared to absolute one.

Isolation Variable $\sum p^T/p^T_{\mu} < 0.1$ in cone of deltaR = 0.4(optimized)

Veto cone of 0.01 to exclude muon tracks Only tracks with pT > 1 GeV Efficiency: Signal = 90%, QCD= 1%, Wjets=3%, ttbar+jets = 35% Comparison of relative Isolation variable in two cone sizes 0.3 & 0.4

Relative Isolation variable gives more background rejection for a given signal efficiency in cone size 0.4

10/25/2009

Angle between two muons

Signal muons most of the time will be back to back. So the value for the angle between two muons has been optmized to be > 2.25 rad.

Invariant mass of dimuon system after all selection cuts

All the backgrounds have been reduced to a good extent. QCD and Z-> τ + τ - are now mainly contributing in the low mass region 20-60 GeV, however ttbar+jets is dominating in the higher mass region.

Cumulative efficiencies of all selection cuts

Selection	$Z \rightarrow \mu^+ \mu^-$	DY (6 <m<sub>1140)</m<sub>	Wjets	$Z \rightarrow \tau^+ \tau^-$	tē+jets	WW	ZZ	WZ	QCD
HLT_DoubleMu3 OR HLT_Mu9	0.91	0.47	0.46	0.34	0.54	0.37	0.45	0.39	0.23
	±3.7e-05	±1.4e-03	±7.8e-04	±2.2e-03	±1.0e-03	±3.0e- 03	±2.8e- 03	±2.8e- 03	1.9e-04
Global muons >=2	0.83 ±4.7e-04	0.41 ±1.3e-04	0.05 ± 3.4e-04	0.18 ±1.8e-03	0.32 ±8.7e-04	0.15 ±2.4e- 03	0.37 ±2.8e- 03	0.25 ±2.5e- 03	0.09 ±1.3e-04
$p_T^{\mu} > 10.0 \text{ GeV}$ and $ \eta_{\mu} < 2.4$	0.67	0.04	0.004	0.07	0.14	0.09	0.30	0.18	0.004
	±5.9e-04	± 5.5e-04	±9.6e-05	±1.1e-03	±6.5e-04	±2.0e- 03	±2.6e- 03	±2.2e- 03	±2.18e-05
Muon ID	0.63 ±6.1e-04	0.04 ±5.2⊵-04	0.002 ±7.2e-05	0.05 ±1.0e-03	0.07 ±4.8e-04	0.07 ±1.7e- 03	0.25 ±2.5e- 03	0.15 ±2.1e- 03	0.0013 ±1.3e-05
$\sum_{\substack{p_T^i \neq p_T^i \\ (\Delta R = 0.4)}} p_T^i < 0.1$	0.57	0.03	6.9e-05	0.04	0.02	0.06	0.22	0.13	1.48e-05
	±6.3e-04	±4.7e-04	±1.31e-05	±1.0e-03	±3.0e-04	±1.6e- 03	±2.3e- 03	±1.%- 03	$\pm 1.83e-06$
Opp Charge	0.57 ±6.3e-04	0.03 ±4.7e-04	5.9e-05 ±1.2e-05	0.04 ±1.0e-03	0.02 ±3e-04	0.06 ±1.6e- 03	0.21 ±2.3e- 03	0.12 ±1.%- 03	1.17e-05 ±1.63e-06
$\Delta \phi > 2.25$	0.51 ±6.3e-04	0.02 ±4.0e-04	2.97e-05 ±8.6e-06	0.04 ±8.6e-04	0.01 ±2.0e-04	0.03 ±1.2e- 03	0.12 ±1.8e- 03	0.07 ±1.4e- 03	4.91e-06 ±1.11e-06

No of events expected in each mass bin for 100 pb -1

Mass window	Signal	Wjets	$Z \rightarrow \tau^+ \tau^-$	ttjets	WW	ZZ	WZ	QCD
10-20	15.55±5.18	0±0	0±0	0±0	0±0	0.0 ± 0.0	0±0	0±0
20-30	2881.43 ± 20.46	0.43 ± 0.43	26.0±2.23	0.30±0.10	0.07±0.04	0.05 ± 0.01	0.04 ± 0.02	142.30 ± 11.93
30-40	2550.84±19.29	0.85 ± 0.60	67.3±3.57	1.71±0.24	0.33±0.08	0.12 ± 0.02	0.14 ± 0.04	67.24±8.2
40-50	1429.85 ± 14.53	1.27 ±0.74	98.41±4.31	3.42±0.34	0.85±0.14	0.18 ± 0.03	0.18 ± 0.05	39.12±6.25
50-60	1046.93±12.46	0.85±0.60	68.79±3.61	5.93±0.45	1.04±0.15	0.17±0.02	0.35 ± 0.07	5.06±2.25
60-70	1117.4 ± 12.87	0.85±0.60	33.63±2.53	6.7±0.47	1.04±0.15	0.22 ± 0.03	0.59 ± 0.09	5.53±2.35
70-80	1931.95 ± 16.84	0±0	9.17±1.32	7.8±0.51	1.59±0.19	0.55±0.04	1.24 ± 0.13	0±0
80-85	2417.11±18.79	0.43±0.43	1.53±0.54	3.89±0.36	0.61±0.12	0.66±0.05	1.26 ± 1.13	0±0
85-89	6590.76 ±30.31	0±0	1.34±0.51	2.71±0.30	0.48±0.10	2.0 ± 0.08	4.06 ± 0.23	0±0
89-93	20136.9 ± 48.71	0±0	0.57±0.33	2.28±0.28	0.48±0.10	6.07±0.14	13.27 ± 0.41	0±0
93-100	5779.81 ±28.52	0±0	0.38±0.27	5.16±0.42	0.76±0.13	1.84 ± 0.08	3.63 ± 0.22	0±0
100-110	885.76±11.47	0±0	0.57±0.33	7.44±0.50	0.96±0.14	0.33 ± 0.03	0.6±0.09	0±0
110-120	279.61 ±6.47	0±0	0.57±0.33	6.87±0.48	0.87±0.14	0.1±0.02	0.24 ± 0.06	0±0
120-150	296.40±6.66	0.43±0.43	0.76±0.38	15.79±0.73	1.74±0.19	0.16±0.02	0.37±0.07	0±0
150-200	120.54±4.25	0±0	0.19±0.19	16.02 ± 0.73	2.02 ± 0.21	0.12 ± 0.02	0.28 ± 0.06	0±0
200-400	71.51±3.27	0±0	0.19±0.19	13.00±0.66	2.13±0.22	0.1±0.02	0.38 ± 0.07	0±0
400-600	7.5±1.06	0±0	0±0	0.84±0.17	0.22±0.07	0.02 ± 0.001	0.05 ± 0.03	0±0
600-800	0±0	0±0	0±0	0±0	0.02±0.02	0.004±0.004	0±0	0±0

→ Total signal events ~ 47500 and total background expected after all cuts for 100 pb $^{-1}$ ~ 750

Drell-Yan differential cross section

> Calculated using the formula :

$$\left(\frac{d\sigma}{dM_{\mu\mu}}\right)_{i} = \frac{N_{obs.} - N_{bkd.}}{\varepsilon_{i}\beta_{i}\Delta ML}$$

- ε = Correction factor for the selection efficiencies in each mass bin.
- β = Correction factor for the detector acceptance in each dimuon mass bin

Points → Measurements for 100 pb -1 Solid histogram → SM prediction

Table shows the Drell-Yan cross section in each mass bin of dimuon pair for 100 pb -1

		L	
Mass window	Uncorrected xsec	cross section (pb)	SM prediction
	(pb)		
10-20	0.16	638.87±229.03	638.87
20-30	28.75	201.84±5.13	201.84
30-40	25.48	75.28±1.92	75.28
40-50	14.35	37.22±1.25	37.22
50-60	10.45	24.88±0.97	24.88
60-70	11.19	25.27±0.94	25.27
70-80	19.29	42.12±1.19	42.12
80-85	24.15	48.38±1.21	48.38
85-89	65.90	116.57±1.72	116.57
89-93	201.47	472.33±4.17	472.33
93-100	57.82	100.29 ± 1.57	100.29
100-110	8.82	17.55±0.72	17.55
110-120	2.80	5.68±0.42	5.68
120-150	2.97	5.96±0.42	5.96
150-200	1.20	2.42±0.27	2.42
200-400	0.72	1.29±0.18	1.29
400-600	0.08	0.1±0.04	0.1
600-800	0.01	0.02 ± 0.02	0.02

Since the corrections has been applied using the gen level info, so our measurements for 100 pb -1 are matching exactly with the SM prediction

Conclusions/Plans

- > Various selection cut has been optimized to reduce backgrounds to good extent.
- QCD mainly contributes to low dimuon mass region, in high mass region QCD is quite under control.
- This work has been done in 2_2_6 CMSSW version at 10 TeV, to redo this work in 3XY series using the new samples at 7 TeV
- To estimate the QCD, $Z \rightarrow \tau + \tau$ and ttbar+jets background using data driven technique.

Back -up

Optimization plot for sum of transverse impact parameter and angle between of two leading muons

Relative efficiencies of all selection cuts

Selection	$Z \rightarrow \mu^+ \mu^-$	DY (6 <m<sub>1140)</m<sub>	Wjets	$Z \rightarrow \tau^+ \tau^-$	t€+jets	WW	ZZ	WZ	QCD
HLT_DoubleMu3 OR	0.91	0.47	0.46	0.34	0.54	0.37	0.46	0.39	0.23
HLT_Mu9									
	±3.7e-04	± 1.3e-03	±7.8e-04	±2.2e-03	$\pm 1.0e-03$	±3.2e-03	±2.8e-03	±2.7e-03	±1.9e-04
Global muons >=2	0.92	0.89	0.11	0.53	0.60	0.41	0.82	0.65	0.39
	±3.4e-04	±8.6e-04	±4.9e-04	±2.3e-03	$\pm 1.0e-03$	±3.3e-03	±2.2e-03	±2.7e-03	±4.6е-04
$p_{\rm T}^{m ho}$ > 10.0 GeV and	0.81	0.10	0.08	0.38	0.44	0.57	0.79	0.73	0.04
$ \bar{\eta_{\mu}} < 2.4$									
	±5.0e-04	±8.3e-04	±4.2e-04	±2.3e-03	±1.0e-03	±3.3e-03	±2.3e-03	±2.5e-03	± 2.4e-
									04
Muon ID	0.94	0.91	0.58	0.72	0.50	0.80	0.86	0.84	0.36
	±3.1e-04	±8.0e-04	±7.8e-04	±2.1e-03	$\pm 1.0e-03$	±2.7e-03	$\pm 2.0e-03$	±2.1e-03	±3.0e-03
$\sum_{ij} p_{\rm T}^i / p_{\rm T}^{\mu} < 0.1$	0.90	0.80	0.03	0.80	0.35	0.82	0.85	0.84	0.01
$(\Delta R = 0.4)$	100.04	111 00	100.04	100.00	100.04	100 00	100 00	101 00	114 m
	±3.8e-04	±1.1e-U3	±2.8e-04	±2.0e-03	±8.8e-04	±2.6e-03	±2.0e-03	±2.1e-03	±1.4e-03
Opp Charge	0.99	0.99	0.86	0.99	0.98	0.99	0.98	0.95	0.79
	±6.7e-06	±4.2e-05	±5.5e-04	±1.1e-04	±2.6e-04	±3.3e-04	±6.Se-04	±1.3e-03	±5.1e-02
$\Delta \phi > 2.25$	0.90	0.71	0.5	0.92	0.43	0.56	0.55	0.55	0.42
	±3.9e-04	±1.2e-03	±7.9e-04	±1.3e-03	$\pm 1.0e-03$	±3.3e-03	±2.8e-03	$\pm 2.8e-03$	$\pm 7.0e-02$