Search for Invisible Higgs Boson in CMS

Sunil Bansal

K. Mazumdar Jasbir Singh

LHC Physics Workshop, Mumbai, 2009

Invisible Decay of Higgs Boson – (I)

- ➢ If Higgs decays to weakly interacting and neutral particles → No visible particle in the detector (only missing energy).
- ➢ Not possible in SM → Its observation will be indication of "New Physics".
- Many BSM incorporate invisible decay of Higgs boson:
 - \rightarrow Fourth generation neutrino
 - → SUSY

........

 \rightarrow Extra-Dimension

Different models give very different branching ratio (BR) to invisible vs Higgs mass, but usually BR is reasonably high for mH < 300 GeV).</p>

Present Analysis is model independent

Invisible Decay of Higgs Boson – (II)

- Trigger and event signature have to come from particle accompanying Higgs production.
- VBF production mode is most suited:
 - \rightarrow Second Highest production rate
 - \rightarrow Jets in forward-backward region with large rapidity gap.
 - \rightarrow Large di-jet invariant mass.
 - \rightarrow Low hadronic activity between the tagging jets.
- Reconstruction of Higgs mass is not possible A counting experiment to see excess over expected SM backgrounds.
- Model independent analysis:

Production rate same as SM rate. BR = 100%

Signal rate	MH (GeV):	120	140	160	
	VBF production cross-section (pb):	4.47	3.83	3.32	

Backgrounds

S

- W + Jets → charged lepton not get detected and the leading jets satisfy VBF conditions.
- Z + Jets → Z decays to neutrino families and the leading jets satisfy VBF conditions.

CSA07 Alpgen samples with Soft VBF pre-selection at generator level $\Delta \eta > 2.0$, Mjj > 300 GeV (j1, j2 two highest pT partons). $Z \rightarrow vv$ and $W \rightarrow |v|(| = e \mu \tau)$ **Cross-section after preselection:** Z + 2Jets = 31.01 pb W + 2Jets = 148 pbZ + 3Jets = 52.55 pb W + 3Jets = 248 pb

- ttbar : MC@NLO inclusive sample, Cross-section= 840 pb
- QCD jets with enormous rate pose as dominant background!

Trigger Selection

L1 condition : Uncorrected MET > 30 GeV HLT conditions :

- \rightarrow MET uncorrected > 60 GeV
- → Leading Jets: corrected pT 1,2 > 40 GeV, $\Delta \eta$ > 4.2 , $\eta 1*\eta 2<0$,

Sample	Trigger Efficiency (%)
Signal ($m_H = 120 \text{ GeV}$)	16.27
Signal ($m_H = 140 \text{ GeV}$)	17.57
Signal ($m_H = 160 \text{ GeV}$)	18.65
Z + jets	4.57
W + jets	3.20
$t\bar{t}(inclusive)$	0.58

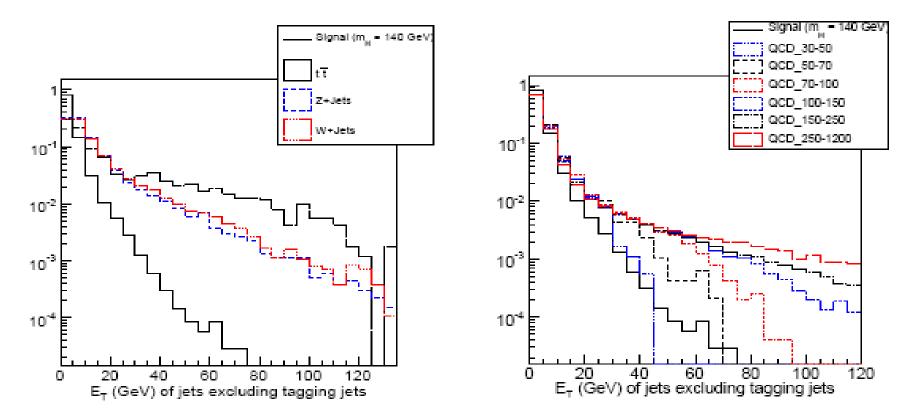
 \rightarrow For QCD (Fast Sim) jet sample HLT information is not available.

Offline Selections-(I)

1) Lepton veto :

- ✓ No isolated electron (pT > 10 GeV, $|\eta| < 2.5$ excluding barrelendcap transition region)
- ✓ No isolated muon (pT > 5 GeV, $|\eta| < 2.1$).

2) VBF condition:


- ✓ pT (1,2) > 40 GeV, η1*η2 < 0, |η| < 5
- $\checkmark \Delta \eta > 4.4$, Mjj > 1200 GeV

3) MET > 100 GeV

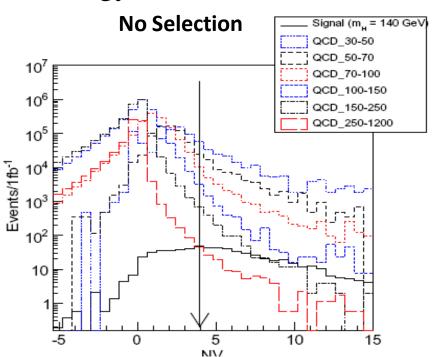
Offline Selections-(II)

4) Central Jet Veto (CJV):

Expected low hadronic activity between tagging jets for signal events

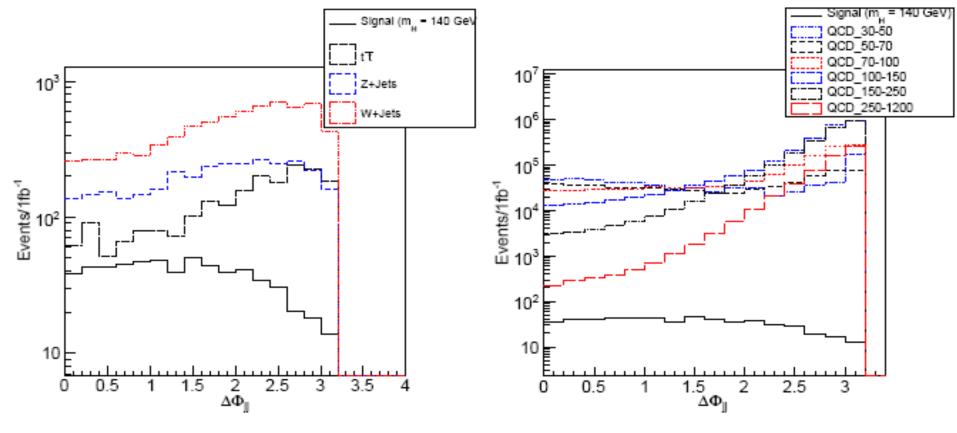
→ Require no jet between (η_{max} -0.5, η_{min} +0.5) tagging jets with E_T (uncorrected) > 15 GeV

Offline selections -(III)


5) NV variable : function of uncorrected E_T of jets and MET (SUSY Group , CMS IN 2007/041)

$$NV = \frac{(E_T^{miss})^2 - (E_T^{j1} - E_T^{j2})^2}{(E_T^{j2})^2}$$

 $(E_T^{J1} - E_T^{J2})/E_T^{J2} \rightarrow$ Related to Jet Energy Resolution


 \rightarrow Require NV > 4

- ✓ NV cut is most effective for higher
 QCD (> 70 GeV)
- ✓ Not much effective for other backgrounds (involve real MET)

Offline Selections-(III)

6) Massive Higgs balances the jets \rightarrow small angle in transverse plane $(\Delta \phi)$ between tagging jets.

 \rightarrow Accept events for $\Delta \phi < 1.5$ rad.

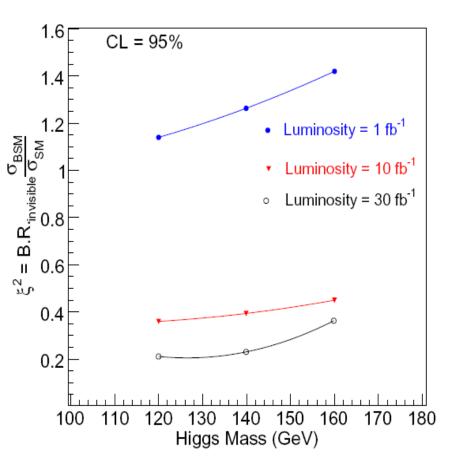
LHC Physics Workshop, Mumbai, 2009

Results

• Events surviving after all cuts for integrated luminosity 1 fb⁻¹

$m_H = 120 \text{ GeV}$	m_H = 140 GeV	m_H = 160 GeV	Z + jets	W + jets	inclusive $t\bar{t}$	QCD (all \hat{p}_t bins)
109	101	89	64	79	5	5849

• Systematic uncertainty for selected signal events


Due to Jet Energy Scale = 14.54 % (α_{jet} = 7%) Due to MET scale = 9.54% (α_{iet} = 7%, α_{calo} = 10%)

Signal Higgs boson mass (GeV)	120	140	160
cross-sction(fb)	4470	3830	3320
Trigger efficiency(%)	16.27	17.57	18.65
Offline selection efficiency (%)	15.30	14.99	14.42
cross-section after all selections (fb)	109	101	89
S/\sqrt{B}	1.41	1.30	1.15
Signal Significance ($Scp = Sc12$)	0.38	0.35	0.31

This mode really seems invisible 🙂

Total background ~6000

Discovery Potential

The invisible higgs reach can be defined in term of a model independent parameter:

$$\xi^2 = \operatorname{Br}(\operatorname{H} \to Inv.) \frac{\sigma_{\operatorname{BSM}}}{\sigma_{\operatorname{SM}}}$$

For $\sigma_{BSM} = \sigma_{SM}$, $\xi^2 = Br(H \rightarrow Inv.)$

$m_H \text{ (GeV)} \rightarrow$	120	140	160
Integrated Luminosity (fb ⁻¹)↓			
10	0.43	0.47	0.54
30	0.25	0.27	0.31

 \rightarrow Invisible search is not possible with integrated luminosity of 1fb⁻¹

Data Driven Methods for Background Estimation

$Z \rightarrow vv + jets$ background:

- \rightarrow W ($\mu\nu$)+ jets process can be used, where muon is well identified.
- → Corrections has to be applied for Kinematic selection, isolation efficiency and difference between W and Z production rate
- ightarrow Correction factor calculated to be 1.7
- → This method estimate 63 +-10 background events which is in good agreement with MC based estimation of 64 +-9

$W \rightarrow \mu v + jets background:$

- \rightarrow W ($\mu\nu$)+ jets process can be used, where muon is well identified.
- \rightarrow Corrections has to be applied for Kinematic selection, isolation efficiency.
- \rightarrow Correction factor calculated to be 1.1
- → This method estimate 40+-6 background events which is in agreement with MC based estimation 43+-7.

$W \rightarrow ev + jets$ background can be estimated same way.

Estimation of Central Jet Veto Efficiency from Data for V + jet backgrounds

- ✓ Hadronic activity is same in Z + jets and W + jets. So either of these can used for estimation of CJV efficiency for V + jets BG.
- For W $\rightarrow \mu\nu$ + jets process: select events with (i) isolated μ , pt > 20 GeV, (ii) 2 leading jets satisfying VBF conditions (iii) MET> 100 GeV. \rightarrow Efficiency to pass CJV requirement = $36.6 \pm 2\%$
- ✓ This is in well agreement CJV efficiency $(36.1 \pm 1.5\%)$ for W→ $\mu\nu$ + jets background obtained in the analysis.
- ✓ This is also give good estimate of CJV efficiency for Z + jets background which is 34.6 ± 1.8%

Conclusions

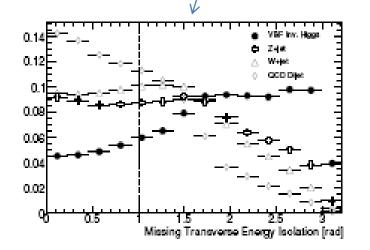
✓ A possibility to search for Invisibly decaying Higgs boson in Vector Boson Fusion mode has been studied with a set of selection criteria.

✓ For integrated luminosity 1fb⁻¹, Invisible Higgs search is not possible. For 10 fb⁻¹ luminosity, B.R. upto 43% can be explored at 95% CL assuming standard model production rate.

✓ Data driven techniques for various backgrounds have been studied.

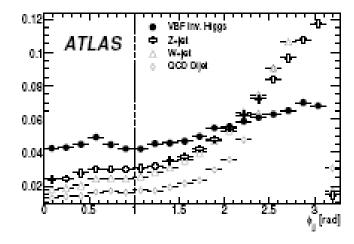
✓ Determination of efficiency for Central Jet Veto from data has been discussed.

Back-up Slides


Comparison with ATLAS result (cern-open-2008-020

Signal & QCD background done with Herwig.
Signal efficiency for Herwig is similar to Pythia, except for CJV (Herwig selects less signal).

• WZ + jets done with alpgen. ttbar is not considered


QCD event statistics not mentioned, probably limited!

Basic selection cuts are same, other than one variable CMS: NV ATLAS: $I = min[\phi(E_T^{miss}) - \phi(j_{1,2})].$

Jet Sample	$\sigma(pb)$	p _T range [GeV]
10	1.76×10 ¹⁰	8-17
J1	1.38×10^{9}	17-35
J2	9.33×10 ⁷	35-70
J3	5.88×10 ⁶	70-140
J4	3.08×10 ⁵	140-280
J5	1.25×10^{4}	280-560
J6	3.60×10^{2}	560-1120
J7	5.71×10^{9}	1120-2240

Shape comparison of $\Delta \phi$ distribution accept events for $\Delta \phi < 1$ rad.

ATLAS Result

Both cut-based and shape analysis tried. Shape analysis has less systematics **>** reach is better

Systematics	Higgs boson 130 GeV	Backgro	und
systematics	niggs boson 150 Gev	Cut-Based	Shape
Luminosity	3 %		$\sim 0\%$
Jet energy resolution:			
$\sigma(E) = 0.45\sqrt{E}$ for $ \eta < 3.2$	0.8 %	5.3 %	4.5 %
$\sigma(E) = 0.63\sqrt{E} \text{ for } \eta > 3.2$			
Jets energy scale:			
$+7\%$ for $ \eta < 3.2$	4.0 %	3.2 %	0.2 %
$+15\%$ for $ \eta > 3.2$			
Jets energy scale:			
-7% for $ \eta < 3.2$	10.0 %	19.5 %	2.8 %
-15% for $ \eta > 3.2$			
Total	10.5 %	20.4 %	5.3 %

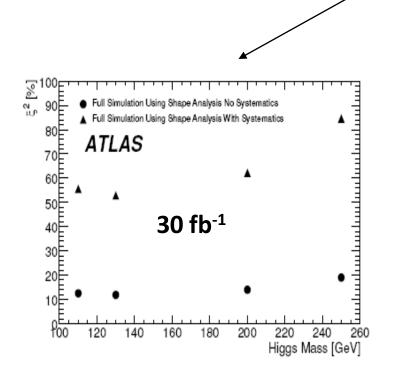
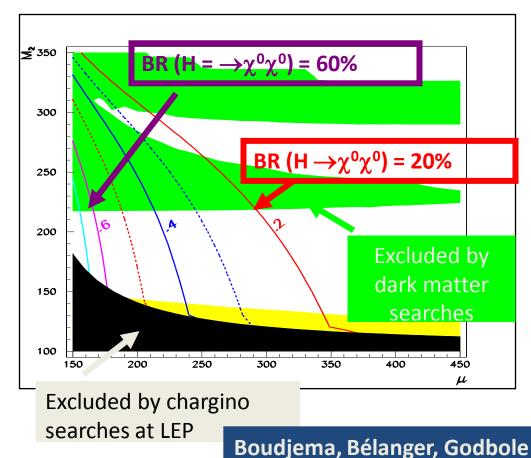


Table 7: Experimental contributions to the systematic uncertainty. The systematic uncertainty on the Jet Energy Scale (JES) is asymmetric. Only the largest (negative) JES systematic uncertainty is included in the total experimental uncertainty shown in the last row of the table.


Figure 6: Sensitivity for an invisible Higgs boson at 95% C.L. via the VBF channel using shape analysis for an integrated luminosity of $30fb^{-1}$ with and without systematic uncertainties. The black triangles (circles) are the results from this analysis with (without) systematic uncertainties.

\rightarrow With systematics, $\xi^2 \sim 50\%$ for Higgs mass 120 GeV

→ different models give very different branching ratio (BR) to invisible vs Higgs mass, but usually BR is reasonably high for mH < 300 GeV).</p>

BR (H $\rightarrow \chi^0 \chi^0$) in the M₂-µ plane

 χ^0 : neutralino (lighest SUSY particle) M₂: gaugino mass μ : Higgs doublet mixing

hep-ph/0206311

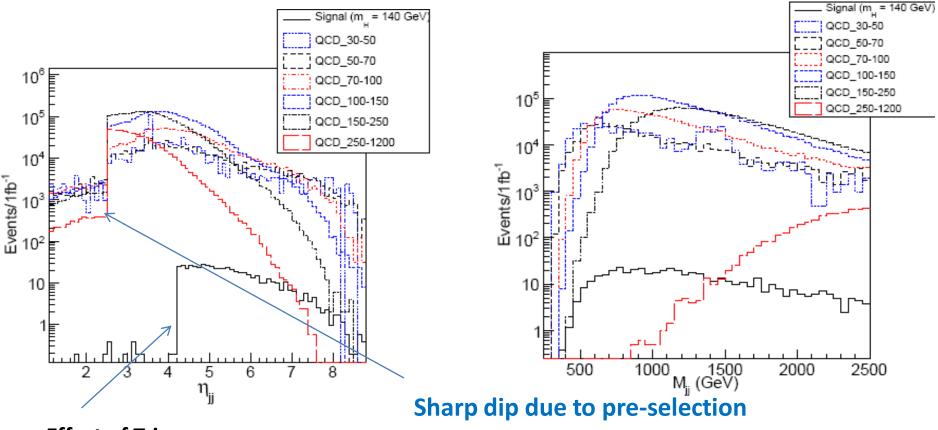
 \rightarrow Analysis performed is model independent.

QCD Generation in Fast Simulation

p_T -bins	Cross-section(fb)	Event Generated	Filter Efficiency
QCD[20-30 GeV]	6.37×10^{11}	564M	1.88×10^{-6}
QCD[30-50 GeV]	J.56 ×10 [™]	328M	6.70×10^{-6}
QCD[50-70 GeV]	1.82×10^{10}	154M	4.29×10^{-5}
QCD[70-100 GeV]	4.84×10^{9}	233M	$3.27 imes 10^{-4}$
QCD[100-150 GeV]	1.15×10^{9}	148M	2.7×10^{-3}
QCD[150-250 GeV]	2.13×10^{8}	107M	1.25×10^{-2}
QCD[250-400 GeV]	2.02×10^{7}	35M	2.7×10^{-2}
QCD[400-600 GeV]	$1.92 imes 10^6$	4M	4.5×10^{-2}
QCD[600-800 GeV]	$2.0 imes10^5$	1.5M	4.2×10^{-2}
QCD[800-1200 GeV]	$4.4 imes 10^4$	800K	3.25×10^{-2}

Total events = 1500 M

For 1 fb⁻¹ lumi, generated event statistics is still not enough ⊗→ very large scale factors. i.e. ~1100 for 20-30 GeV bin

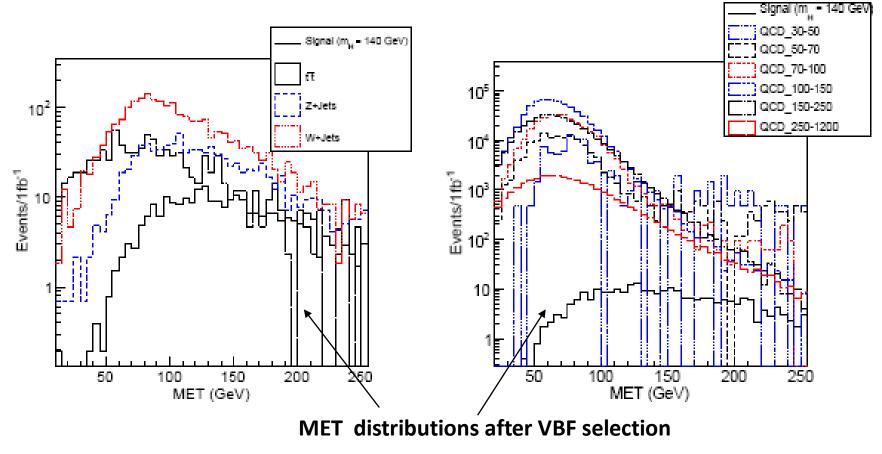

QCD sample generated using CMSSW_1_6_7 → No HLT information available Thanks to Wisconsin Grid -T2!!

Data Samples used for analysis

Sample	filter eff. $\times \sigma$ (fb)	Event Analyzed	Luminosity (fb ⁻¹)	
Signal ($m_H = 120 \text{ GeV}$)	4470	21924	4.90	
Signal ($m_H = 140 \text{ GeV}$)	3830 <	20088	5.24	Filter eff. = 1
Signal ($m_H = 160 \text{ GeV}$)	3320	20196	6.08	ſ
Z + 2 jets (Alpgen)	31010	42000	1.35	
Z + 3 jets (Alpgen)	55520 <	75000	1.35	
W + 2 jets (Alpgen)	148220	150000	1.01	Filter eff. ~ 10⁻⁴
W + 3 jets (Alpgen)	247910	267903	1.08	Filler en. 10
tt (MC@NLO)	840000	350000	0.42	
QCD [20-30 GeV]	1197560	1058	0.0009	
QCD [30-50 GeV]	1045200	2209	0.002	
QCD [50-70 GeV]	891800	7607	0.009	
QCD [70-100 GeV]	1582680	75928	0.048	
QCD [100-150 GeV]	3105000	399983	0.13	
QCD [150-250 GeV]	2662500	1339412	0.5	
QCD [250-400 GeV]	545400	940202	1.72	
QCD [400-600 GeV]	86400	178786	2.1	
QCD [600-800 GeV]	8400	64427	7.7	
QCD [800-1200 GeV]	1430	27392	19	

Offline Selections (Cont..)

2) VBF conditions on jets: pT (1,2) > 40 GeV, η1*η2<0, |η|<5



Effect of Trigger

→ Require $\Delta \eta > 4.4$, Mjj > 1200 GeV

Offline selections (cont.)

3) Missing Transverse Energy (MET)

→ Require MET > 100 GeV

Results

Sample	Signal ($m_H = 140 \text{ GeV}$)	Z + jets	W + jets	inclusive $t\overline{t}$
Scale factor	0.19	0.74	1.05	4.17
HLT Condition	673	3800	12680	4870
Lepton veto	660	3717	8388	2449
VBF	286	911	2255	898
$E_{\rm T}>100~{ m GeV}$	241	631	1117	355
CJV	190	216	289	38
NV > 4	119	92	95	7
$\Delta \Phi_{jj} < 1.5$ rad.	101	64	79	5

Cross-section (fb) at each stage of selection

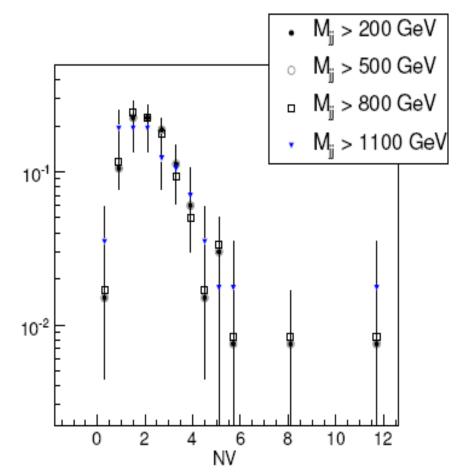
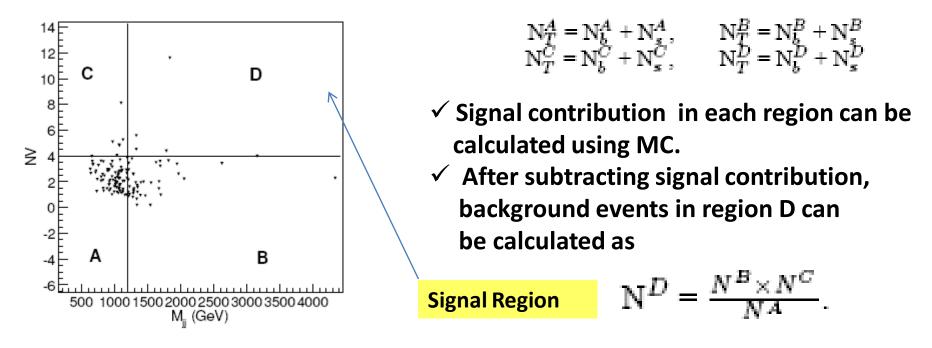

Sample	QCD	QCD	QCD	QCD	QCD	QCD	QCD	QCD
	[20-30 GeV]	[30-50 GeV]	[50-70 GeV]	[70-100 GeV]	[100-150 GeV]	[150-250 GeV]	[250-400 GeV]	[400-1200 GeV]
Scale factor	1129	476	118	20.8	7.76	1.99	0.58	0.35
$\sigma \times$ Filter Eff. (fb)	1197560	1045200	891800	1582680	3105000	2662500	545400	96230
Lepton veto	1193030	1038156	884646	1564520	3072708	2630640	537546	94527
VBF	46408	98056	142308	318941	625911	352694	27200	1446
$E_{\rm T}^{\prime} > 100~{ m GeV}$	15847	33320	22302	29016	34544	34562	5383	310
CJV	4528	9520	5782	3648	7634	8767	1205	43
NV > 4	3395	4760	2478	341	54	10	1	1
$\Delta \Phi_{jj} <$ 1.5 rad.	3395	476	1770	155	45	8	0	0

Table 9: Estimated cross-section (fb) for signal and QCD background in various \hat{p}_T -bins for various selection cuts.

Matrix Method

→ Need 2 independent variables having discriminating power between signal and backgrounds


- NV distribution for QCD events (70-100 GeV bin) for different
 values of Mjj cut after all other selections (VBF, MET, CJV, Δφ)
- NV and Mjj are un-correlated to good extent

Estimation of QCD, ttbar + jets backgrounds (cont.)

Define four regions A, B, C and D demarcated by NV and Mjj cut values, each region has contribution from all backgrounds and signal

Distribution of QCD (70-100 GeV) events in 4 quadrants

QCD + ttbar contribution in signal region can be calculated by subtracting contribution of Z/W + jets backgrounds.