Statistics in Physics Analysis Lecture 2

Harrison B. Prosper
Florida State University

Workshop on LHC Physics
TIFR, Mumbai
21 - 27 October, 2009

Outline

- Lecture 2 - Foundations \& Applications
- The Bayesian Approach
- Decisions \& Loss
- Hypothesis Tests
- Summary

The Bayesian Approach

The Bayesian Approach

A Bayesian calculation requires the following ingredients:

$$
\begin{array}{ll}
p(D \mid \theta, \varphi) & \begin{array}{l}
\text { the probability model that represents } \\
\text { the mechanism that gave rise to the } \\
\text { observed data } D \text {, given some unknown } \\
\text { values of the parameters } \theta, \varphi
\end{array} \\
p(\theta, \varphi) & \begin{array}{l}
\text { the prior probability density over the } \\
\text { parameter space of the probability } \\
\text { model }
\end{array}
\end{array}
$$

The Bayesian Approach

Then one calculates the posterior density as follows:

posterior marginal prior

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d \theta}
$$

where the marginal (or integrated) likelihood is given by

$$
p(D \mid \theta)=\int_{\Phi} p(D \mid \theta, \phi) p(\phi \mid \theta) d \phi
$$

and

$$
p(\theta, \phi)=p(\phi \mid \theta) p(\theta) \text { is the full prior density. }
$$

Example - D0 Top Discovery Data

D0 1995 Top Discovery Data

$$
\begin{array}{ll}
n & =17 \text { events } \\
b_{0} & =3.8 \pm 0.6 \text { events }
\end{array}
$$

Example - D0 Top Discovery Data

Likelihood Functions

$$
\begin{array}{ll}
p\left(n \mid b+s, H_{l}\right) & =\operatorname{Poisson}(n \mid b+s)=\exp [-(b+s)](b+s)^{n} / n! \\
p\left(n \mid b, H_{0}\right) & =\operatorname{Poisson}(n \mid b)=\exp [-b] b^{n} / n!
\end{array}
$$

Prior Density

$$
\begin{aligned}
p(\mathrm{~b}, \mathrm{~s}) & =p(\mathrm{~b} \mid \mathrm{s}) p(\mathrm{~s}) \\
p(b \mid s) & =\operatorname{Gamma}(k b \mid B+1)=k \exp (-k b)(k b)^{B} / \Gamma(B+1)
\end{aligned}
$$

where the effective scale factor k and count B are

$$
\begin{array}{lll}
b_{0}=B / k & B=\left(b_{0} / \delta b\right)^{2}=(3.8 / 0.6)^{2}=41.11 \\
\delta b & =\sqrt{ } \mathrm{B} / \mathrm{k} &
\end{array}
$$

Example - Integrated Likelihoods

The integrated likelihoods are

$$
\begin{aligned}
& p\left(n \mid s, H_{1}\right)=\int_{0}^{\infty} \operatorname{Poisson}(n \mid b+s) \operatorname{Gamma}(k b \mid B+1) d b \\
& \quad=\left(\frac{k}{1+k}\right)^{B+1} \sum_{r=0}^{n} \frac{1}{(1+k)^{r}} \frac{\Gamma(B+1+r)}{\Gamma(B+1) r!} \operatorname{Poisson}(n-r \mid s)
\end{aligned}
$$

and

$$
p\left(n \mid H_{0}\right)=p\left(n \mid s=0, H_{1}\right)=\left(\frac{k}{1+k}\right)^{B+1} \frac{1}{(1+k)^{n}} \frac{\Gamma(B+1+n)}{\Gamma(B+1) n!}
$$

Exercise 1: Compute these integrated likelihoods

Example - Posterior Density

Given the integrated likelihood

$$
p\left(n \mid s, H_{1}\right)=\left(\frac{k}{1+k}\right)^{B+1} \sum_{r=0}^{n} c_{r}(k, B) \operatorname{Poisson}(n-r \mid s)
$$

where

$$
c_{r}(k, B) \equiv \frac{1}{(1+k)^{r}} \frac{\Gamma(B+1+r)}{\Gamma(B+1) r!}
$$

we can compute

$$
p\left(s \mid n, H_{1}\right)=\frac{p\left(n \mid s, H_{1}\right) p\left(s \mid H_{1}\right)}{\int_{0}^{\infty} p\left(n \mid s, H_{1}\right) p\left(s \mid H_{1}\right) d s}
$$

Example - Posterior Density

Assuming a flat prior for the signal $p\left(s \mid H_{1}\right)=$ constant, the posterior density is given by

$$
\begin{aligned}
& \sum^{n} c_{r}(k, B) \operatorname{Poisson}(n-r \mid s) \\
& p\left(s \mid n, H_{1}\right)=\frac{\sum_{r=0}}{\sum_{r=0}^{n} c_{r}(k, B)} \\
& \text { Exercise 2: Compute } p\left(s \mid n, H_{1}\right) \text {. } \\
& \text { Repeat assuming the prior density } \\
& p\left(s \mid H_{1}\right)=\operatorname{Gamma}(q s \mid S+1) \text {, } \\
& \text { where } S=\left(s_{0} / \delta s\right)^{2} \text { and } \\
& q=s_{0} / \delta s^{2}
\end{aligned}
$$

Decisions \& Loss

Decisions and Loss

The posterior density $p(\theta \mid D)$ is the complete answer to an inference about the parameter θ.

However, it is often of interest to summarize this answer with a point estimate θ^{*} (a measurement) and, or, an interval estimate $\left[\theta_{\mathrm{L}}, \theta_{\mathrm{U}}\right.$].

Or, we wish to decide which of two or more competing models is preferred by the data.

Decision theory provides a general way to model such problems.

Decisions and Loss

One way to render a decision about the value of θ is to implement the decision as a function d that returns an estimate θ^{*} of θ. A function d that returns estimates is called an estimator.

In principle, we also need to specify a loss function $L(d, \theta)$ that quantifies what we lose should the estimate turn out to have been a bad one.

Decisions and Loss

In practice, since our knowledge of the parameter θ is encoded in the posterior density $p(\theta \mid D)$, our decisions will be more robust if we average ($\mathrm{E}[*]$) the loss $L(d, \theta)$ with respect to $p(\theta \mid D)$

$$
\begin{aligned}
R(d) & =\mathrm{E}[L(d, \theta)] \\
& =\int L(d, \theta) p(\theta \mid D) \mathrm{d} \theta
\end{aligned}
$$

The quantity $R(d)$ is called the risk function.
By definition, the optimal estimate of θ is the one that minimizes the risk

$$
\theta^{*}=\arg \min _{\mathrm{d}} R(d)
$$

Comments

In general, different loss functions will yield different estimates.

Therefore, even with exactly the same data one should not be surprised to obtain different results.

Reasonable people can disagree about the results simply because they disagree about what properties of the results are thought to be most useful.

For example, many insist that a result should always be unbiased, while others do not!

Comments

Consider a loss function $L(d, m)$ to extract a value for the Higgs mass, \boldsymbol{m}, from a posterior density $p(\boldsymbol{m} \mid D)$.

Suppose $L(d, m)$ is invariant in the following sense: it yields an estimate \boldsymbol{m}^{*} of \boldsymbol{m} which, when inserted into the prediction $\sigma=g(m)$ for the Higgs cross section, yields an estimate of the cross section $\sigma^{*}=g\left(m^{*}\right)$ that is identical to the one obtained using the loss function $L(d, \sigma)$.
$L(d, \sigma)$ is the loss function $L(d, m)$ with m replaced by σ.

In general, either m^{*} or σ^{*} (or both) will be biased.

Comments

To see this, expand $\sigma^{*}=\boldsymbol{g}\left(\boldsymbol{m}^{*}\right)$ about the true Higgs mass \boldsymbol{m}

$$
\sigma^{*} \approx g(\boldsymbol{m})+\left(m^{*}-\boldsymbol{m}\right) \mathrm{g}^{\prime}+1 / 2\left(m^{*}-\boldsymbol{m}\right)^{2} \mathrm{~g}^{\prime \prime}
$$

and average both sides over an ensemble of estimates. This gives

$$
\begin{aligned}
& \mathrm{E}\left[\sigma^{*}\right] \approx \sigma+\text { bias } \mathrm{g}^{\prime}+1 / 2 \mathrm{mse} \mathrm{~g}^{\prime \prime}, \\
& \mathrm{E}\left[\sigma^{*}\right] \approx \sigma+\text { bias } \mathrm{g}^{\prime}+1 / 2\left[\text { bias }^{2}+\text { variance }\right] \mathrm{g}^{\prime \prime},
\end{aligned}
$$

where bias $=\mathrm{E}\left[m^{*}\right]-\boldsymbol{m}$ and variance $=\mathrm{E}\left[\boldsymbol{m}^{* 2}\right]-\mathrm{E}\left[\boldsymbol{m}^{*}\right]^{2}$.
mse: mean square error (note: $\mathrm{rms}=\sqrt{ } \mathrm{mse}$)

Decisions and Loss

Point Estimation

 quadratic loss$$
L(d, \theta)=(d-\theta)^{2}
$$

Average with respect to $p(\theta \mid D)$
risk $R(d)=\mathrm{E}\left[(d-\theta)^{2}\right]$

$$
\begin{aligned}
& =\mathrm{E}\left[d^{2}\right]-2 \mathrm{E}[\theta d]+\mathrm{E}\left[\theta^{2}\right] \\
& =d^{2}-2 \mathrm{E}[\theta] d+\mathrm{E}\left[\theta^{2}\right]
\end{aligned}
$$

minimize with respect to d

$$
\mathrm{d} R / \mathrm{d} d=2 d-2 \mathrm{E}[\theta]=0
$$

obtaining, $\theta^{*}=\mathrm{E}[\theta]$

Note: quadratic loss is not invariant. If $a=g(\theta)$, then $L(d, a)=(d-a)^{2}$ gives $a^{*} \quad=\mathrm{E}[a] \neq \mathrm{g}\left(\theta^{*}\right)$

Decisions and Loss

Point Estimation

 bilinear loss$$
L(d, \theta)= \begin{cases}a(\theta-d), & d<\theta \\ b(d-\theta), & d \geq \theta\end{cases}
$$

risk $R(d)=a \int H(\theta-d)(\theta-d) p(\theta \mid D) d \theta$

$$
+b \int H(d-\theta)(d-\theta) p(\theta \mid D) d \theta
$$

$$
H(x)=1 \text { if } x>0 \text { else } 0
$$

Decisions and Loss

Point Estimation

bilinear loss

The optimal estimate is

$$
\theta^{*}=\arg \min _{\mathrm{d}} R(d)
$$

where θ^{*} is the $a /(a+b)$ quantile

$$
\int^{\theta^{*}} p(\theta \mid D) d \theta=a /(a+b)
$$

of $p(\theta \mid D)$. If we set $a=b, \theta^{*}=$ median of $p(\theta \mid D)$

Note: estimates based on quantiles are invariant.

Decisions and Loss

Point Estimation

 zero-one loss$$
L(d, \theta)= \begin{cases}0, & |d-\theta| \leq b \\ 1, & |d-\theta|>b\end{cases}
$$

Its risk function is

$$
R(d)=\int[H(\theta-b-d)+H(d-\theta-b)] p(\theta \mid D) d \theta
$$

and the optimal estimate $\theta^{*}=\min _{\mathrm{d}} R(d)$ is the solution of

$$
p\left(\theta^{*}+b \mid D\right)=p\left(\theta^{*}-b \mid D\right) .
$$

In the limit $b \rightarrow 0$, one obtains $\theta^{*}=$ mode of $p(\theta \mid D)$. The mode is not invariant.

Example - Posterior Mean

Compute the moments of $p\left(s \mid n, H_{1}\right)$ about zero

$$
\begin{aligned}
& M_{m}=\int_{0}^{\infty} s^{m} p\left(s \mid n, H_{1}\right) d s \\
& \quad=\sum_{r=0}^{n} c_{r}(k, B)(n-r+m)!/(n-r)!/ \sum_{r=0}^{n} c_{r}(k, B)
\end{aligned}
$$

For the D0 top quark discovery data we find:

mean

$$
\begin{aligned}
& M_{1}=14.0 \text { events } \\
& \text { standard deviation } \\
& \sqrt{ }\left(M^{2}-M_{1}^{2}\right)=4.3 \text { events }
\end{aligned}
$$

Exercise 3: Compute M_{m}.

Hypothesis Testing

P-Values

Null hypothesis $\left(\boldsymbol{H}_{0}\right)$: background-only

Example - Top Discovery p-value (a)

Background, $b_{0}=3.8$ events (ignoring uncertainty)

$$
n=17
$$

$$
\mathrm{p} \text {-value }=\sum_{n=17}^{\infty} \operatorname{Poisson}(n \mid 3.8)=5.7 \times 10^{-7}
$$

This is equivalent to 4.9σ

Example - Top Discovery p-value (b)

Background, $b_{0}=3.8 \pm 0.6$ events

$$
n=17
$$

$$
\mathrm{p} \text {-value }=\sum_{n=17}^{\infty} p\left(n \mid H_{0}\right)=5.4 \times 10^{-6}
$$

This is equivalent to 4.4σ

The Neyman-Pearson Test

Neyman argued that it is necessary to consider alternative hypotheses
\boldsymbol{H}_{1}

$$
\begin{array}{cl}
\mathcal{X} & \mathcal{X}_{\alpha} \\
\alpha=\int_{x_{\alpha}}^{\infty} p\left(x \mid H_{0}\right) d x & \begin{array}{l}
\text { A fixed significance, the } \\
\text { probability to reject a true null, } \\
\text { is chosen before data are analyzed. }
\end{array}
\end{array}
$$

The Neyman-Pearson Test

The Neyman-Pearson Test

Power curve
power vs. significance.
Note: in general, no analysis is generally uniformly the most powerful.

$$
\alpha=\int_{x_{\alpha}}^{\infty} p\left(x \mid H_{0}\right) d x \quad p=\int_{x_{\alpha}}^{\infty} p\left(x \mid H_{1}\right) d x
$$

significance of test

Punzi's Test

Exercise 4: Write as $\mathrm{Q}=\mathrm{S} / \sqrt{ }(\mathrm{B}+\mathrm{a})$ and find a

Summary

- Decision Theory
- The basic insight is that optimal decision making entails combining a loss function with a posterior density. Since loss functions can differ, it is unsurprising that results can differ even when using the same data.
- Hypothesis Tests
- The standard non-Bayesian approach is that of Neyman and Pearson, plus the calculation of p-values. Neyman argued (in agreement with Bayesians) that it is necessary to consider pairs of hypotheses.

