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h Lecture 2 – Foundations & Applications 
h The Bayesian Approach 
h Decisions & Loss 
h Hypothesis Tests 
h Summary 
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A Bayesian calculation requires the following ingredients: 

  p(D | θ, φ)   the probability model that represents 
   the mechanism that gave rise to the  
   observed data D, given some unknown 
   values of the parameters θ, φ.  

  p(θ, φ)   the prior probability density over the 
   parameter space of the probability  
   model 
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Then one calculates the posterior density as follows: 

where the marginal (or integrated) likelihood is given by 

and        is the full prior density.

  
p(θ | D) = p(D |θ) p(θ)

p(D |θ) p(θ) dθ∫

  
p(D |θ) = p(D |θ ,φ) p(φ |θ) dφ

Φ
∫

  p(θ ,φ) = p(φ |θ) p(θ)



D0 1995 Top Discovery Data 

  n  = 17 events 

  b0  = 3.8 ± 0.6 events 
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Likelihood Functions 
 p(n|b+s, H1)  = Poisson(n|b+s) = exp[-(b+s)] (b+s)n / n! 
 p(n|b, H0)   = Poisson(n|b) = exp[-b] bn / n! 

Prior Density 
 p(b, s)  = p(b|s) p(s)  
 p(b|s)  = Gamma(kb|B+1) = k exp(-kb) (kb)B / Γ(B+1) 

where the effective scale factor k and count B are 
 b0  = B / k 
 δb  = √B / k  
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B = (b0 /δb)
2 = (3.8 / 0.6)2 = 41.11

k = b0 /δb
2 = 3.8 / 0.62 = 10.56



Statistics in Physics Analysis –  Harrison B. Prosper 8 

The  integrated likelihoods are 

and 

  

p(n | s, H1) = Poisson(
0

∞

∫ n | b + s)Gamma(kb | B +1)db

= k
1+ k

⎛
⎝⎜

⎞
⎠⎟

B+1
1

(1+ k)r

Γ(B +1+ r)
Γ(B +1)r!r=0

n

∑ Poisson(n − r | s)

  
p(n | H0 ) = p(n | s = 0, H1) = k

1+ k
⎛
⎝⎜

⎞
⎠⎟

B+1
1

(1+ k)n

Γ(B +1+ n)
Γ(B +1)n!

Exercise 1: Compute these integrated likelihoods 
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Given the integrated likelihood 

where 

we can compute 

  
p(n | s, H1) = k

1+ k
⎛
⎝⎜

⎞
⎠⎟

B+1

cr (k, B)
r=0

n

∑ Poisson(n − r | s)

  
cr (k, B) ≡ 1

(1+ k)r

Γ(B +1+ r)
Γ(B +1)r!

  

p(s | n, H1) =
p(n | s, H1) p(s | H1)

p(n | s, H1) p(s | H1) ds
0

∞

∫



Assuming a flat prior for the signal p(s|H1) = constant,  the 
posterior density is given by 
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p(s | n, H1) =
cr (k, B)

r=0

n

∑ Poisson(n − r | s)

cr (k, B)
r=0

n

∑
Exercise 2: Compute p(s|n, H1). 

Repeat assuming the prior density 
p(s|H1) = Gamma(qs|S+1), 
where  S = (s0 / δs)2 and 

 q = s0 / δs2 
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The posterior density p(θ| D) is the complete answer to an 
inference about the parameter θ.  

However, it is often of interest to summarize this answer with 
a point estimate θ* (a measurement) and, or, an  
interval estimate [θL, θU].  

Or, we wish to decide which of two or more competing 
models is preferred by the data. 

Decision theory provides a general way to model such 
problems.  
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One way to render a decision about the value of θ is to 
implement the decision as a function d that returns an 
estimate θ* of θ. A function d that returns estimates is 
called an estimator. 

In principle, we also need to specify a loss function  
L(d, θ) that quantifies what we lose should the estimate 
turn out to have been a bad one. 
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In practice, since our knowledge of the parameter θ is encoded 
in the posterior density p(θ | D), our decisions will be more 
robust if we average (E[*]) the loss L(d, θ) with respect to 
p(θ | D) 
    R(d)  = E[L(d, θ)] 
    = ∫ L(d, θ) p(θ | D) dθ 

The quantity R(d) is called the risk function.  

By definition, the optimal estimate of θ is the one that 
minimizes the risk 

   θ* = arg mind R(d) 
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In general, different loss functions will yield different 
estimates.  

Therefore, even with exactly the same data one should not be 
surprised to obtain different results.  

Reasonable people can disagree about the results simply 
because they disagree about what properties of the results 
are thought to be most useful.  

For example, many insist that a result should always be 
unbiased, while others do not! 
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Consider a loss function L(d, m) to extract a value for the 
Higgs mass, m, from a posterior density p(m|D).  

Suppose L(d, m) is invariant in the following sense: it yields 
an estimate m* of m which, when inserted into the 
prediction σ = g(m) for the Higgs cross section, yields an 
estimate of the cross section σ* = g(m*) that is identical to 
the one obtained using the loss function L(d, σ).  

L(d, σ) is the loss function L(d, m) with m replaced byσ.  

In general, either m* or σ* (or both) will be biased.  
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To see this, expand σ* = g(m*) about the true Higgs mass m 

 σ* ≈ g(m) + (m* – m) g' + ½ (m* – m)2 g'' 

and average both sides over an ensemble of estimates. This 
gives   
 E[σ*] ≈ σ  + bias g' + ½mse g'',   

E[σ*] ≈ σ  + bias g' + ½[bias2 + variance] g'', 

where bias = E[m*] – m and variance = E[m*2] – E[m*]2. 
  mse: mean square error (note: rms = √mse)   
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Point Estimation  
 quadratic loss 
  L(d, θ) = (d – θ)2 

 Average with respect to p(θ |D) 
 risk R (d)  = E[(d – θ)2] 
   = E[d2] – 2E[θd] + E[θ 2] 
   = d2 – 2E[θ]d + E[θ 2] 
 minimize with respect to d 
  dR/dd  = 2d – 2E[θ] = 0 

  obtaining, θ* = E[θ] 

   θ       d 

L(d, θ)  

Note: quadratic loss is not 
invariant. If a = g(θ), then 
L(d, a) = (d – a)2 gives 
  a*  = E[a] ≠ g(θ*)  
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Point Estimation  
 bilinear loss  

risk 

H(x) = 1 if x > 0 else 0 

   θ       d 

L(d, θ)  
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Point Estimation  
 bilinear loss  
 The optimal estimate is 
   θ* = arg mind R(d)  

 where θ* is the a/(a+b) quantile 

 of p(θ | D). If we set a = b, θ* = median of p(θ | D) 

Note: estimates based on quantiles are invariant.    

   q       d 

L(d, q)  



Statistics in Physics Analysis –  Harrison B. Prosper 21 

Point Estimation  
 zero-one loss  

 Its risk function is 

 and the optimal estimate θ* = mind R(d) is the solution of 
  p(θ* + b|D) = p(θ* – b|D).  

In the limit b → 0, one obtains θ* = mode of p(θ | D). The 
mode is not invariant.    

   q       d 

L(d, q)  

2b 



Compute the moments of p(s|n, H1) about zero 

For the D0 top quark discovery  
data we find: 
 mean 
    M1 = 14.0 events 
 standard deviation 
    √(M2 – M1

2) = 4.3 events 
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Mm = sm

0

∞

∫ p(s | n, H1)ds

Exercise 3: Compute Mm. 

  
= cr (k, B)(n − r + m)!/ (n − r)!

r=0

n

∑ / cr (k, B)
r=0

n

∑
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p(x | H0 )

x x0

Null hypothesis (H0): background-only 

p-value ≡ p(x | H0 )dxx0

∞

∫

The null hypothesis is 
rejected if the p-value  
is judged to be small  
enough. 
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p(n | H0 ) = Poisson(n | b0 )

Background, b0 = 3.8 events (ignoring uncertainty) 

p-value = Poisson(n | 3.8)
n=17

∞

∑ = 5.7 ×10−7

n = 17

n is observed count 

This is equivalent to 4.9 σ 
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Background, b0 = 3.8 ± 0.6 events 

p-value = p(n | H0 )
n=17

∞

∑ = 5.4 ×10−6

n = 17

n is observed count 

This is equivalent to 4.4 σ 

  
p(n | H0 ) = k

1+ k
⎛
⎝⎜

⎞
⎠⎟

B+1
1

(1+ k)n

Γ(B +1+ n)
Γ(B +1)n!
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p(x | H0 )
p(x | H1)

x

� 

xα
α = p(x | H0 )dxxα

∞

∫

Alternative hypothesis 

significance of test 

A fixed significance, the  
probability to reject a true null, 
is chosen before data are analyzed.  

Neyman argued  
that it is  
necessary to  
consider  
alternative  
hypotheses  
H1 
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x

� 

xα

In Neyman’s approach, 
hypothesis tests are 
a contest between 
significance and  
power, the probability to 
accept a true alternative. 

α = p(x | H0 )dxxα

∞

∫ p = p(x | H1)dxxα

∞

∫
power significance of test 

p(x | H0 ) p(x | H1)



Statistics in Physics Analysis –  Harrison B. Prosper 29 

p

α

Power curve 
power vs. significance.  
Note: in general, no  
analysis is generally  
uniformly the most  
powerful. 

α = p(x | H0 )dxxα

∞

∫ p = p(x | H1)dxxα

∞

∫
power significance of test 

Blue is the more 
powerful below 
the cross-over point 
and green is the  
more powerful after.  
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p(x | H0 )
p(x | H1)

B xn,m
S = n B + m B + S

Alternative hypothesis Punzi argued 
that, for a given 
choice of α,  
a good choice  
for p is 
0.95. 

B + S

Exercise 4: Write as Q = S/√(B+a) and find a 
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h Decision Theory 
h The basic insight is that optimal decision making 

entails combining a loss function with a posterior 
density. Since loss functions can differ, it is 
unsurprising that results can differ even when using the 
same data. 

h Hypothesis Tests 
h The standard non-Bayesian approach is that of Neyman 

and Pearson, plus the calculation of p-values. Neyman 
argued (in agreement with Bayesians) that it is 
necessary to consider pairs of hypotheses. 


