Measuring the Top-Quark Event Properties at the LHC with CMS

A "Shopping List" with a particular Focus on Studies/Strategies with the <u>Early Data</u>

Tim Christiansen (CERN)

LHC Physics Workshop Mumbai, India 21–27 October 2009

Outline

- Introduction
 - Top-Quark Physics: from the Tevatron to the LHC
 - First Pieces for first Data
- Top-Quark Pair Production
 - Emphasis on startup
 - Early Strategies for first Cross-Section Measurements
 - Brief Outlook onto 2nd-Generation Analyses
- Single Top-Quark Production
- Beyond the X-Section Measurements
 - m(ttbar) Spectra
 - Heavy-Flavour Content of ttbar Samples

→ En route to New Physics …

Brief Introduction: Top Quarks and LHC's Perspective

The Top Quark

- The top quark (t) is by far the heaviest elementary particle known in the Standard Model (SM)
 - m(top) = (171 ± 1.1^{stat.} ± 1.2^{syst.}) GeV/c² (Tevatron)
 - About 40× heavier than the second most massive quark (b)
 - About 2x as massive as the heaviest known Boson (Z)
- Weak-Isospin partner of the bottom quark (b)
 - Spin S=1/2, Ladung $Q = -2/3 \cdot Q(e)$, $I_3 = 1/2$
- Completes the SM picture of quarks and leptons:
 - The third generation

The 3 fermion
generations:Quarks:
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
 $\begin{pmatrix} c \\ s \end{pmatrix}$ $\begin{pmatrix} t \\ b \end{pmatrix}$ Leptons: $\begin{pmatrix} \nu_e \\ e \end{pmatrix}$ $\begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}$ $\begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$

Page

Interesting Physics with Top Quarks

- Spin correlations in production
- Rare decays
- Single-top
- More generally: the top quark is unusually heavy, maybe there is something different about it?

What we know about the Top Quark

- Practically everything that we (directly) know about the top quark comes from the Tevatron experiments DØ & CDF:
 - Tevatron: proton-antiproton collisions at nearly 2 TeV
 - Discovered 1994-5 with just "a handful" of candidates
 - Only few hundreds of top-quark events have been studied to date
- Production: predominately in top-antitop pairs (ttbar)

The Top Quark & the LHC

ttbar production cross sections as a function of collision energy \sqrt{s}

- At √s = 14 TeV, about 100× larger x-section* + much more luminosity than at the Tevatron:
 - The LHC is a Top-Quark Factory

* At \sqrt{s} = 10 TeV (7 TeV) still about 50× (20×) larger x-section ("LHC in 2010")

Top-Quark Decay

- The CKM matrix element V_{tb}~1
 - t decays almost exclusively into a W boson and a b quark
- Top lifetime is so short, that it decays before it hadronizes
 - i.e. there is no "T meson", the top quark decays freely (free quark decay)
- The W boson is real, on-shell $(m_t > 2 \times m_W)$
 - W-decay $W^{\pm} \rightarrow \ell^{\pm} \nu \ (\ell = \text{lepton, i.e., } e^{\pm}, \ \mu^{\pm} \text{ oder } \tau^{\pm})$
 - Branching ratio BR ~ 1/9 per lepton flavor
 - W-decay $W^{\pm} \rightarrow qq'$ (qq' = light quarks!)
 - BR ~ 2/3

 V_{tq}

The 3 main Channels of ttbar Events

Page 9

Top at CMS

- The top-physics programme has distinct phases:
 - Establish tt at CMS
 - Basic studies of tt:
 - Is the selected ttbar sample consistent with ttbar hypothesis?
 - By construction, this is a broad search for BSM physics
 - Compare kinematical distributions with ttbar simulation (p_T , H_T , η , multiplicity, MET, p_T (tt), m(tt), angles, ...)
 - Discrepancies? ⇒ compare different channels, take ratios for cancellation of systematics, …
 - N.B.: need event selections that facilitate such comparisons!
 - σ(tt) comes out of this programme
 - Top as calibration tool
 - The rich ttbar signature provides m_t & m_W (t & W are <u>on-shell</u> in ttbar→WbWb!)
 → constrained fits → jet-energy calibration!
 - Sel. w/o b-tagging \rightarrow indep. measurement of $\varepsilon_{b-tagging}$
 - Test bench for missing transverse energy
 - Detailed studies, single-top, etc. ...

. → Talk by J. D'Hondt

Establishing ttbar at CMS

- The mission of the LHC is the search for (and the study of) New Physics!
 - Already the first top studies should be seen in this light
 - The most exotic of the known particles (mass, free decay ...)
 - Rich signature: ttbar requires the reconstruction of
 - All kinds of leptons (e,μ,τ)
 - Hadronic jets (from heavy and light quarks)
 - Missing transverse energy (neutrino(s))
 - b-tagging: identification of jets from heavy quarks
 - Demonstration of our understanding of the Detectors and of the Standard Model (SM)
 - Measure the ttbar cross-section
 - Measure kinematical properties
 - Some of those measurements can be seen as searches themselves:
 - There can be New Physics in the ttbar sample

Top Signals & New Physics?

• ttbar events live in a complex multidimensional region of the section space

ttbar "core region", z.B. 1µ+4jets, 2 b-tags, missing transverse Energy $\not\!\!\!E_T$

Event selection (incl. SM-Control regions, i.e., it is not limited to the ttbar core region)

- SM background (W+jets, QCD-multijets, Z+jets, ...) lives in a different region, overlapping with ttbar
- Simplified: New Physics
 - may be completely disjoint from ttbar signal (A)
 - may have significant overlap with SM (and ttbar) (B)
 - may have an effect on the tail of the ttbar distribution (C)
- More direct: New Physics may also manifest themselves directly in the production (z.B. X→ttbar) or in the top decay

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Few Words on ttbar Challenges ...

- The event selection includes a large SM control region
 - because the ttbar signature is not as clean as a resonance, for example
- We will need to demonstrate our understanding of the control regions before moving on to the ttbar measurement itself
- Usually, all SM non-ttbar backgrounds have lower jet multiplicities than ttbar

 \Rightarrow ttbar analysis is an analysis as a function of N_{jets} , with and without b-tagging

Few Words on ttbar Challenges ... 2

σ_{LHC}(ttbar) ≈ 100 x σ_{Tevatron}(ttbar) (√s = 14 TeV), so what's so hard about it?! ...

- Compared to \sqrt{s} , the top it is not that heavy anymore...
 - QCD (multi-jet events) in I+jets is a challenge
 - One fake lepton or one b→l + many jets
 - At the Tevatron this is almost eliminated by MET cut of order 25 GeV
 - The typical MET (v) of a ttbar event is 40 GeV @ LHC
 - At CMS, QCD events with 4 jets of E_T~30 GeV have typical reconstructed MET similar to the MET in ttbar!
 - Instead:
 - at the moment rely on high thresholds for jets and lepton p_T and very tight isolation (will loose quite a bit of efficiency)
 - find data-driven methods to measure QCD contribution (ongoing)
- ttbar goes up by x 100, but inclusive W only by x10 compared to Tevatron, that's great, no?

W+4 jets still dominant BG in I+jets!

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

First Signals & Cross Section in the Di-Lepton Channel

First ttbar Cross Section in the Dilepton Channel

- CMS Physics Analysis Summary TOP-09-002 <u>http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-002-pas.pdf</u>
- Analysis strategy:
 - Simple counting experiment
 - N(cand) after a selection that is characteristic to tt→lvblvb is compared to expected N(SM BG)
 - Any excess is ascribed to N(ttbar)
 - *N*(SM background) estimated from ttbar-depleted control samples

Signature: 2 prompt, "high"- p_T leptons, 2 (b-)jets, MET>0 **Background:** Drell-Yan ($Z/\gamma^* \rightarrow l^+l^-$) + jets, W+jets, QCD multijet events (w/ fake prompt leptons), single-top t W t V

DY+jets, W+jets, and QCD BG is hard to correctly simulate!

Dilpetons

- Selection: 3 Channels <u>ee+jets</u>, <u>μμ+jets</u> and <u>eμ+jets</u>
 - Trigger:
 - single- $\mu p_T > 9$ GeV for $\mu\mu$
 - single-e p_T > 15 GeV for ee
 - .OR. of the above for $e\mu$
 - \geq 2 isolated leptons (e or μ) with p_T > 20 GeV, $|\eta|$ < 2.4
 - Electrons: electron-ID, dedicated photon conversion removal, loose cut on the 2D impact parameter (IP) to select prompt electrons
 - Muons: Tracks in the muon system associated (and fitted together) with central tracks, muon-ID, loose IP cut
 - Isolation: $p_T(\mu/e) / [\sum_{\Delta R < 0.3/4} E_T^{calo} + p_T(\mu/e)] > 0.9/0.8,$ $p_T(\mu/e) / [\sum_{\Delta R < 0.3} p_T^{track} + p_T(\mu/e)] > 0.9$

 $\sum_{\Delta R < X}$ sums over track momenta (calo deposits) in the cone around the lepton, but excluding the track (energy) of the lepton itself

- Opposite sign of the 2 lepton charges
- Only 1 lepton pair per event:
 - In case of >2 of such leptons in the event, unambiguously associate them with 1 channel (sort by p_T & quality/iso) → no overlap

Cone size

 $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)}$

μ/e

Impact parameter ⊥ beam axis:

Dilepton Selection continued

- Jets: R=0.5 SisCone^{*}, calibrated (no flavor correction) p_T > 30 GeV, $|\eta| < 2.4$ *Seedless Infrared-safe Cone Algorithm
 - Discard jets closer than $\Delta R = 0.3$ from electron candidate
 - "default" is calo-jets; possible alternative: track-jets (studied also) or track-corr. jets, Particle Flow ... ^{Preliminery 10 pb1}
 - Ask for $N_{\text{jet}} \ge 2$
- Z-veto for $\mu\mu$, ee channels:
 - |m(II)-M_Z| < 15 GeV and</p>
 - missing- E_T :
 - MET (corrected for jets and muons)
 - MET > 20 (30) GeV for eµ (ee & μµ)
- $N(jet) \ge 2$ is the signal sample
- N(jet) = 0 or 1 as control sample

Dileptons

- Event yields:
 - Jet multiplicity for the • 3 channels & combined

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Page 20

Background Estimation

- BUT: Even though we may qualitatively understand the background distributions, their <u>normalization</u> (= effective cross-section after all cuts) has <u>LARGE uncertainties</u> if taken from simulation only!
 - Estimate main BG sources from the data themselves:

Strategy:

- 1) Study how a backgrounddominated region looks
- 2) Use this knowledge to estimate the background under the signal

Background Determination

- Data-driven method for Drell-Yan (DY) estimation:
 - Method to predict DY \rightarrow ee,µµ (not $\tau\tau$)

 $N_{DY}^{out \ (est)} = \frac{N_{DY \ DATA}^{in}}{N_{DY \ MC}^{in}} \cdot N_{DY \ MC}^{out} \cdot N_{DY \ MC}^{out}$ Estimate DY outside of Z-veto region (near m_z) by counting events inside, take R_{out/in} = N^{out} / Nⁱⁿ from simulation

• Subtract non-DY contribution near m_Z using eµ data:

$$N_{DY}^{out \ (est)} = (N_{ll \ DATA}^{in} - k \cdot N_{e\mu \ DATA}^{in}) \cdot R_{out/in} \qquad k_{\mu\mu} = \frac{1}{2} \sqrt{\frac{n_{\mu\mu}^{obs}}{n_{ee}^{obs}}} \qquad \mathbf{k_{ee}} = \mathbf{1}/\mathbf{k_{\mu\mu}}$$

- Main assumption: Trust MC prediction of $\rm R_{out/in}$ more than MC prediction of $\sigma,$ N(jet), or MET

Final State	nJets	R _{out/in}	Nout (est)	$N_{DY}^{out \ (true)} + N_{ZZ}^{out \ (true)}$
ee	≥ 2	0.100 ± 0.010	4.23 ± 0.41	4.03 ± 0.37
μμ	≥ 2	0.105 ± 0.009	5.33 ± 0.46	5.13 ± 0.4

Background from Fake Leptons

- Here, "fake" means mis-identified prompt leptons originating from jets (e.g. W+jets, QCD)
- Use the fake rate FR:
 - FR = N(fake I passes all cuts) / N(fake I passes loose ID/isolation)
 - loose = loosely isolated, loose lepton-ID, no IP cut
 - Measure FR=FR(p_T, |η|) from inclusive multi-jet sample (here ~ all leptons are "fakes")
 - Prediction: N(evts w/ loose e/μ) × FR_{e/μ} × (1-FR_{e/μ})

		$N_{\rm jets}=0$	$N_{ m jets}=1$	$N_{ m jets} \geq 2$	
eu.	ttdil (observed)	0.7 ± 0.1	4.2 ± 0.1	11.6 ± 0.2	(can be
o.g	ttdil (predicted)	0.012 ± 0.001	0.051 ± 0.003	0.112 ± 0.004	← spillage corrected for)
CC	W+jets (observed)	0.9 ± 0.2	0.5 ± 0.2	0.2 ± 0.1	
	W+jets (predicted)	1.08 ± 0.04	0.43 ± 0.03	0.22 ± 0.02	T lanes

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Dileptons: Expected Precision & Systematics

- Generally small backgrounds, dominating Event yields for 10 pb⁻¹ @ 10 TeV BGs (DY for II, part of WZ,ZZ) and fake leptons (e.g. W+jets) are under control and can be estimated from the data (single-top from simulation, take ~large uncertainty) Event yields for 10 pb⁻¹ @ 10 TeV Main selection Data sample $\frac{e^+e^-}{\mu^+\mu^-} e^{\pm}\mu^{\mp}}{e^+e^-}$ other $t\overline{t}$ 0.21 ± 0.03 0.04 ± 0.01 0.46 ± 0 0.46 ± 0.03 0.56 ± 0.03 1.40 ± 0 WW/WZ/ZZ 0.26 ± 0.02 0.33 ± 0.03 0.71 ± 0
- Note: General flow/method (for BG estimates) independent of jet type (calo, tracks, JPT, PF) or MET (calo, track-MET)
- For 10/pb at 10 TeV:
 - lept-ID & isolation from T&P
 - varied ±10% JES
 - Theory: Comparison MG w/ Pythia & MC@NLO
 - Residual BGs (tW, part of V V, DY→ττ): assign 50%
 - Lumi-uncertainty quoted separately
- Combined:

 $\delta\sigma/\sigma \approx 15\%^{(\text{stat.})} \pm 10\%^{(\text{syst.})} \pm 10\%^{(\text{lumi})}$

		1	Main selection					
	Data sample	e+e-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$				
C	$t\overline{t} \to \ell\ell$	11.6 ± 0.2	13.2 ± 0.2	35.6 ± 0.4				
n	other <i>tt</i>	0.21 ± 0.03	0.04 ± 0.01	0.46 ± 0.04				
	Single top	0.46 ± 0.03	0.56 ± 0.03	1.40 ± 0.06				
	WW/WZ/ZZ	0.26 ± 0.02	0.33 ± 0.03	0.71 ± 0.05				
	$DY \rightarrow \tau \tau + jets$	0.3 ± 0.1	0.3 ± 0.1	0.7 ± 0.2				
	$DY \rightarrow ee/\mu\mu + jets$	4.1 ± 0.4	5.3 ± 0.4	0.08 ± 0.05				
	W + jets	0.2 ± 0.1	< 0.1	0.3 ± 0.1				
	QCD	< 1	< 0.4	< 0.4				
)	Total backgrounds	5.5 ± 0.4	6.6 ± 0.4	3.7 ± 0.2				
`	Data driven fakes	1.1 ± 0.6	0.8 ± 0.4	2.5 ± 1.2				
	Data driven DY	4.0 ± 1.3	5.1 ± 1.6					

Relative uncertainties

Source	e^+e^- and $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
Statistical	25	18
Lepton ID	5	5
Lepton isolation	³ in	3
Jet energy scale	8 0/	5
Theory	4 %	4
$DY \rightarrow ee, \mu\mu \text{ method}$	10	
Fake leptons method	4	4
Residual background	5	4
Integrated luminosity	10	10

Dilepton Channel ++

- So what comes next?
 - Is the selected sample really the SM ttbar? First handle: Heavy-flavor content (expect ~2 b-jets) with b-

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Page 25

Measuring the B-tagging Performance

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Page 26

The Semi-Leptonic Channels: I+jets

Next: Semileptonic Channel I+jets

- 1 "highly energetic" lepton
- ≥ 4 jets (2 b-jets, 2 light-quark jets)
- Hadronic leg t→Wb→qq'b is fully reconstructable
- Larger BR than di-lepton channel

ttbar x-section in μ+jets

- CMS PAS TOP-09-003: <u>http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-003-pas.pdf</u>
- Analysis strategy:
 - Simple counting experiment, robust selection
 - N(cand) after a selection that is characteristic to tt→lvbqqb is compared to expected N(SM backgd.)
 - Any excess is ascribed to N(ttbar)
 - N(SM BG) is estimated from ttbar-depleted control sample

W

µ+*jets Selection*

- Lepton selection (similar to di-lepton analysis)
 - Trigger: single muon, $p_T > 9$ GeV
 - Exactly 1 isolated global muon:
 - $|\eta(\mu)| < 2.1, p_T > 20 \text{ GeV}$
 - 2D distance from primary vertex: $d_0 < 200 \ \mu m$
 - Quality, e.g.
 - χ^2 of track fit, minimum number of hits in the tracker
 - m.i.p. compatibility in E/HCAL, and
 - rel-Isolation: $[\sum_{\Delta R < 0.3} E_T^{calo} + \sum_{\Delta R < 0.3} p_T^{tracks}] / p_T(\mu) < 0.05$
 - Veto on any additional isolated lepton (μ or e) over threshold (loose ID & isolation)
- Jets: $|\eta| < 2.4$, $p_T > 30$ GeV, SisCone R=0.5
- Count N(jet), require $N(jet) \ge 4$ for singal sample

- For $N(jet) \ge 4$, the dominating BG are:
 - W/Z+jets
 - Normalization from template fit
 - QCD multi-jet events (w/ 1 fake isolated lepton)
 - Looks small, but could be larger real life (have means to adjust)
 - Use data-driven method for subtraction
 - Take others (e.g. single-top) from simulation, assign conservative X% uncertainty

QCD Multi-Jet BG: e.g., ABCD or Fit

Statistical Subtraction of W/Z + jets

- For x-section extraction, perform **1D template fit** to variable X with templates:
 - signal: shape from MC
 - W/Z+jets (similar shape)
 - QCD: shape & normalization from data
 - single-top: shape & normalization from MC
- Studied 3 choices for X:

CMS Preliminary @ 20 pb⁻¹

Candidates

20

0

40

a)

Page 33

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Template Fit $\rightarrow \sigma$ (ttbar)

- All 3 variables give somewhat comparable results
- $|\eta(\mu)|$ with smallest syst. uncertainties (the fact that ttbar is produced more centrally than W/Z+jets comes mainly from the mass difference \Rightarrow least sensitive to JES)

μ+jets Fit Systematics

Source	Ur	ncertainty [9	6]
for 20 pb ⁻¹ at 10 TeV	Fit to $\eta(\mu)$	Fit to M3	Fit to M3'
Statistical Uncertainty (20 pb ⁻¹)	17.7	16.3	11.5
Jet Energy Scale	16.7	15.1	19
tt MC Generator	1.9	14.9	14
tt ISR/FSR	3.3	7.7	2
W+jets Factorization scale	4.4	4.7	4
W+jets Matching threshold	5.5	2.8	4
Single Top Shape	0.1	0.8	1
PDF Uncertainty	5.0	5.0	5.0
Total Systematic Error	19.2	23.8	25.0
Luminosity Error	10.0	10.0	10.0

- JES from ±10% variation of jet energies
- Theory: from syst. samples (comparison of different Monte-Carlo generators)
- PDF uncertainty from CTEC6.6 using re-weighting methods implemented in the LHAPDF package
- Quote luminosity-uncertainty separately

Outlook for *µ***+jets**

- Ask for N>0 b-tagged jets in the event (in addition to previous selection):
 - Here with a simple secondary-vertex tagger *
 - Requires a good understanding of the heavy-flavor content in W+jets events (t.b. measured in control sample N_{jet}<4 !?)
 - Eff. & fake rate from jet samples

→ pure selection vs. additional systematic uncertainty

ttbar cross-section in e+jets

- CMS PAS TOP-09-004
 - <u>http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-004-pas.pdf</u>
- Similar approach as for μ+jets:

e+jets Selection

- Trigger: single electron with $p_T > 15$ GeV
- Exactly 1 electron:
 - E_{τ} > 30 GeV, $|\eta_e|$ < 2.5 (excluding 1.442< $|\eta_e|$ <1.560 between barrel and endcap region)
 - |*d_o*| < 200µm
 - rel-iso < 0.1, tight electron-ID (shower shape, H/E, etc. ...)
- Veto additional isolated muons (p_T > 20 GeV)
- Jets:
 - As in other analyses: SisCone0.5, calo-jets, $|\eta_j|$ <2.4
 - *p*₇ > 30 GeV
 - Electron-jet cleaning: ∆R(e,j)>0.3
- Additional Z-veto: 2 options (will pick 1):
 - Option A: Reject events with additional loose electrons
 - Option α : Allow additional loose e, but reject 76< M_{ee} <106 GeV

Additional rejection of QCD multi-jets

- Here, present 2 alternatives for further QCD rejection:
 - A: $|\eta_e| < 1.442$ barrel only:
 - Most material is in the forward region ⇒ removing the forward region reduces background from photon conversions
 - B:
 - MET > 20 GeV
 - Explicit photon-conversion removal:
 - Look for track pairs of opposite curvature
 - If ∆ < 0.04 cm & one of the tracks is within R=0.3 of the electron candidate, then reject the event

e+jets Results

- M3: a simple "reconstruction" of the hadronically decaying top
- Statistical separation using template distributions $\rightarrow \sigma$ (ttbar)

Expected uncertainties:

for 20 pb ⁻¹	Relative Systematic Uncertainty
Jet Energy Scale	15%
MC Generator	10%
$t\bar{t}$ ISR/FSR uncertainty	3%
W+jets MC Factorization Scale	1%
W+jets MC Matching threshold	5%
Shape uncertainty of Single Top	1%
Shape uncertainty of QCD	2%
PDF uncertainty	5%
Total	20%

Luminosity uncertainty (10%) quoted separately ...

Few words of care ...

- The analyses shown are complete in the sense that all <u>base</u>-ingredients have been worked out at least once, however:
 - Collision data will likely ask for new strategies, modifications (MET, primary vertex, calibrations, ...)
 - Also alternative choices, advanced reconstruction tools ...
 - So far, it was said that lepton efficiencies (trigger, reconstruction, isolation, quality cuts ...) will come from *Tag* & *Probe* with Z→II data
 - Has yet to be exercised in the context of ttbar analyses (e.g. corrections required due to high multiplicity in ttbar)
 - Need a luminosity estimate to measure σ (ttbar)
 - tools for lumi calculation; need to exercise them (in conjunction with bad run/lumi-segment list)
 - if problems with lumi numbers arriving in time, could also measure σ (ttbar)/ σ (Z) (and take σ (Z) from theory) ... t.b.i.

Then, there is b-tagging: A shopping list

- Next: want to define a strategy for cross-section measurement with b-tagging (lepton and/or life-time)
 - Natural order:
 - First observe/measure $\sigma(tt)$ with kinematical analysis (w/o b-tags)
 - Then, verify compatibility with SM: e.g. differential x-sections, but also N(b-tag) distribution (→ establishing b-tagging)
 - Finally: Include b-tagging in x-section measurement
 - Currently, we are after the strategy t.b. used with first data
 - I.e. fine tuning of the details (algorithm improvement, optimization of working points or selection) are of 2nd priority
 - Take existing b-tag algorithms + selection from kinematical analysis,
 → put them together
 - Goal: complete strategy before 1st collisions
 - Assume that b-tag eff. measured via System8/ p_T^{rel} in QCD bbbar
 - How to apply tag-efficiency to ttbar sample? (there are indications that there are some subtleties involved ...)

B-tagging II: Ingredients

- for $N_{jet} \ge 4$ bin (in e/μ +jets):
 - N(ttbar) = N(obs.) N(W+light) N(W+heavy) N(QCD) N(VV)
 N(singl-top) N(Z)
- This is really a measurement of the background!
- $N_{jet} = 1,2,3$ is depleted in ttbar \rightarrow control samples
 - W/Z+light: these are fake tags; take fake-tag parameterization from b-tag group, apply to W+light
 - Does it work? Is FR=FR($p_T, \eta, N_{\text{tracks}}$...)? parameterization adequate?
 - W/Z+heavy: Wbbbar, Wccbar, Wc (heavy-flavor MC tools)
 - Need σ(W+heavy)/σ(W+light)
 - Simply take it from MC?
 - Or measure in N_{jet} =1,2, extrapolate to $N_{jet} \ge 4$? associated syst.?
 - QCD: have data-driven methods for analysis w/o b-tag, do they still apply?
 - Single-top: directly from MC with uncertainty from x-section?

Beyond the Measurement of the Inclusive Cross Section

New Physics in the Top Sector?

 With little more data, study the selected samples in more detail, e.g. the m(ttbar) spectrum
 e.g. μ+jets channel: Requires dedicated isolation

Electroweak Production: Single-Top

- Tevatron: recent 5σ observation in s+t channels (~ 1+2 pb)
 - tW channel negligible at Tevatron
- LHC @ 10 TeV: t-channel is dominant

Route:

- Confirm observation
- Competitive constraints on $|V_{tb}|$
- FCNC and anonymous Wtb couplings
- all channels ...

CMS PAS TOP-09-005:

http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-005-pas.pdf

From the Tevatron to the LHC

LHC analysis will be quite different:

W+jets will be less of a concern than ttbar

t-Channel: Selection

- Single-muon, extra-lepton veto, isolated
 - exactly 1 μ: p_T > 20 GeV, |η| < 2.1
 - no isolated electron
 - relative isolation:
 p_T/(p_T+tklso+calolso)>0.95
- Two jets, well separated from the muon candidate
 - IterativeCone R=0.5
 - *p_T* > 20 GeV, |η| < 2.1
 - ΔR(μ,jet) > 0.3 (otherwise reject event)

- One b-jet
 - ≥ 2 tracks in the jet with significant distance from interaction point

- 1 jet passing a tight selection
- no other jet that passes even light tag selection
- On-shell W boson
 - *M_T* > 50 GeV

$$M_T = \sqrt{(p_{T,\mu} + p_{T,\nu})^2 - (p_{x,\mu} + p_{x,\nu})^2 - (p_{y,\mu} + p_{y,\nu})^2}$$

Background from QCD Multi-Jet Events

 How to estimate BG with "fake prompt/isolated" muons (QCD multi-jet events with muons from b/c decays in jets) from signal-like events (prompt isolate muons from W decays):

signal-like events

• Parameterize the shape of the transverse mass distribution M_T : $F(M_T) = a \times S(M_T) + b \times B(M_T)$

(e.g. s.t., $W \rightarrow \mu \nu$) e.g. from ctrl. sample: i) W-enriched sample, w/o b-tagging, or ii) Z-enriched sample with 2 μ , 76 < $m_{\mu\mu}$ < 106 GeV, 2 jets, w/o b-tagging Scale μ -momenta by M_W/M_Z then treat one of the muons as neutrino by adding its p_T to MET background shape

e.g. from ctrl. sample: anti-isolation, no btagging cut

 estimate 22 for 12±7
 expected (3 MC events!), assigned 45% uncert.

Candidate Events:

Will give a first indication that selected sample is indeed from top-quarks

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Extracting N(t-channel single-top)

Single-Top Results

Expected	Source of uncertainty	$\Delta \sigma$ [%]	Expected sensitivity	
sensitivity for	statistical	± 35	2.8σ	
200 pb ⁻¹	<i>b</i> tagging	± 7.3	2.7σ	
200 pb	mistag	± 0.4	2.7σ	
	JES	± 5.5	2.7σ	
	MET	± 9.9	2.7σ	
	PDF	± 5.5	2.7σ	
	total	± 39	2.7σ	

This, with a **<u>simple and robust</u>** selection and <u>**not**</u> a complex multi-variate analysis, and with 200 pb⁻¹ only!

Future options: e.g. the use of the charge asymmetry (more u than d quarks in protons), ...

Conclusions

- There is plenty of top signal expected in the data of the first LHC run
 - Possibly even at 7 TeV: ttbar cross-section is ~ 40% compared to 10 TeV
- ttbar is a milestone of the LHC physics program
 - understanding of the detector, reconstruction, and the Standard Model
 - Important background for searches
 - calibration tool: jets, b-tagging
- Focused on first robust analyses for cross-section measurements
 - Estimation of backgrounds from the data themselves

Summary continued

- Of course, this is not the full top-physics program
 - Once the first top-quark signals are established, need to look at the samples from all angles: is there more to them? compatibility with the standard model expectations, new physics ...
 - Heavy flavor content
 - differential cross sections, e.g. $m(\text{ttbar}), p_T, |\eta| \dots$
 - comparison of different channels (also hadronic ttbar!)
 - V_{tb} in production and/or decay, rare decays
 - ttbar with taus (see <u>CMS PAS TOP-08-004</u> & backup)
 - Fully-hadronic channel tt→jets
 -
 - Top-quark properties
 - measurement of the top-quark mass m(top)
 - spin correlation, W polarization in ttbar events
 - ...

Thanks for the invitation and the wonderful organization of the LHC Physics Workshop!

τ Di-lepton Channels: τ +e & τ + μ with Jets

- Isolated lepton (μ or e), p_T > 20 GeV
- Tau as narrow jet with leading track $p_T > 20$ GeV
- Count other jets with $E_T > 30$ GeV, and $|\eta| < 2.4$
- Missing transverse energy MET > 60 GeV

Fake-Tau Estimation

- Same approach as for electron fakes
 - "Measure" *τ*-fake rate in QCD events
 - Apply to Monte-Carlo W+jets sample to predict I+ τ rate
 - Compare to I+ τ rate "measured" in W+jets MC

Good to about 30 %

Table 3: Expected number of τ -fake events (from "data" and from MC expectations) in $\mathcal{L} = 100 \text{ pb}^{-1}$. Uncertainties are statistical only.

Me	thod	τ-fakes from "data" expected from event selection		_
	γ+jets	523±8		-
1- or 3-prongs	"all" jets	542±9		
r or o prongo	leading jet	639±10	438±20	
	next-to-leading	498±9		
	back-to-back	577±10		_
	γ +jets	308±5		-
1	"all" jets	361±7	778±16 S/B ≈	0.4 for
1-prong	leading jet	417±7	2/8±16	
	next-to-leading	341±7	I-proi	ng decyas
	back-to-back	385±7		_

(CMS PAS TOP-08-004)

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

Jets Reconstrcution

Jets are the experimental signature of quarks & gluons, registered as collimated sprays of particles

Jet algorithms: mathematic rule how these particle/energy sprays are clustered and summed

The "raw" jet parameters need to be calibrated, so that the jets (energy, direction) "best correspond" to the originating quarks/guons

Limitations / necessary corrections:

Jet 2

Jet 1

Detector noise, pile-up (signals from other collisions), underlying event, detector response (inhomogeneity, particle- and energy-dependent response), particles missed by the jet algorithm (magnetic field!), different showering/fragmentation of gluons, light and heavy quarks, muon corrections, etc. ..

 \rightarrow Calibration with collision data, but this needs some time and patience ...

LHC Expectations for the upcoming Run

http://lhc-commissioning.web.cern.ch/lhc-commissioning/luminosity/09-10-lumi-estimate.htm

Month	Comment	Turn around time	Energy [TeV]	Max number bunches	Protons/Bunch	% nom. intensity	Min beta*	Peak Luminosity cm ⁻² s ⁻¹	Integrated Luminosity	events/X
1	Beam commissioning								First collisions	
2	<u>Pilot physics</u> , partial squeeze, gentle increase in bunch intensity, avaialbility low	Long	3.5	43	3 x 10 ¹⁰		4 m	8.6 x 10 ²⁹	100 - 200 nb ⁻¹	
3		5	3.5	43	5 x 10 ¹⁰		4 m	2.4 x 10 ³⁰	~ 1 pb ⁻¹	
4		5	3.5	156	5 x 10 ¹⁰	2.5	2 m	1.7 x 10 ³¹	~9 pb ⁻¹	
5a	No crossing angle - could at this stage push intensity see 5b	5	3.5	156	7 x 10 ¹⁰	3.4	2 m	3.4 x 10 ³¹	~18 pb ⁻¹	0.8
5b	No crossing angle - squeezing to beta* = 1m at this stage would double these lumi numbers (and the pile-up)	5	3.5	156	10 x 10 ¹⁰	4.8	2 m	6.9 x 10 ³¹	~36 pb ⁻¹	1.6
6	Possible shift to higher energy - would anticipate ~4 weeks to reestablish physics follow by a fairly gentle increase back up in intensity.	Would ain followed b higher ene	Vould aim to first provide a period of physics at the higher energy (4.5 TeV, say) without crossing angle, this could be ollowed by a move to 50 ns with a limited number of bunches. Note that the total intensity limit will go down with the move to higher energy.							
7	4 - 5 TeV (5 TeV luminosity quoted - doesn't make too much difference). No crossing angle.	5	4 -5	156	7 x 10 ¹⁰	3.4	2 m	4.9 x 10 ³¹	~26 pb ⁻¹	
8	50 ns - nominal crossing angle - aperture restricts squeezing further - note limited complement of bunches.	5	4 -5	144	7 x 10 ¹⁰	3.1	2 m	4.4 x 10 ³¹	~23 pb ⁻¹	
9	50 ns	5	4 -5	288	7 x 10 ¹⁰	6.2	2 m	8.8 x 10 ³¹	~46 pb ⁻¹	
10	50 ns*	5	4 -5	432	7 x 10 ¹⁰	9.4	2 m	1.3 x 10 ³²	~69 pb ⁻¹	
(11)	50 ns*	5	4 -5	432	9 x 10 ¹⁰	11.5*	2 m	2.1 x 10 ³²	~110 pb ⁻¹	

T. Christiansen · LHC Physics Workshop · Mumbai, 21–27 Oct. 2009

