

STUDY OF DIRECT PHOTON AT CMS

Sudha Ahuja* Brajesh Choudhary QCD Photon group at CMS

LHC Physics Workshop, TIFR, Mumbai

- Direct Photon Motivation
- Direct Photon Physics Signal & Background
- Event Generation
- S/B optimization studies
- Summary
- Conclusions

MOTIVATION

Direct Photons are those which emerge directly from the hard scattering of the partons so they provide a clean signature of the underlying hard scattering dynamics. Study Direct Photon

- > To validate perturbative QCD
- > To study gluon distribution of proton
- > Background to many SM and BSM processes such as
 - a) Intermediate mass SM Higgs (100 GeV 130 GeV) $H{\rightarrow}~\gamma\gamma$
 - b) Diphoton processes for new physics
 - Quark Compositeness signature : $qqbar \rightarrow q^* \rightarrow \gamma\gamma$
 - Randall-Sundrum Graviton signature : $G \rightarrow \gamma \gamma$
 - c) $\gamma + \mathbf{E}_{T}$ process for new physics
 - $\gamma + \mathbf{E}_{\mathsf{T}}$ As a signature of ADD Graviton
 - Quark Compositeness signature : $qg \rightarrow q^* \rightarrow \gamma + jet$

- Importance of Direct Photon Physics
- As Direct Photon will test the SM, is background for SM Higgs→γγ and will be a signature of new physics such as Quark Compositeness, ADD Graviton or Extra dimensions etc. So an understanding of Direct photon is very important at CMS.

Generation of events

EVENT GENERATORS Used: -

a)ALPGEN

- Dedicated to the study of Multiparton hard processes in hadronic collisions (2 → n process)
- Tree level Matrix Element Generator
- Interfaced to Pythia for full showering and Hadronization of event
 b)MADGRAPH
- Tree Level Matrix Element Generator
- Interfaced to Pythia for full showering and Hadronization of event
 C)PYTHIA
- Used to generate high-energy physics events , i.e. sets of outgoing particles produced in the interactions between two incoming particles

<u>CMSSW</u>

10/27/09

 Software used for simulation of detectors, reconstruction and to analyse data in CMS

- Centre of mass energy = 14 TeV
- Signal :- Photon+Njets (N = 1, 2, 3 & 4)
- Background Njets (N = 2,3,4,5 & 6)
- CMS Software Version used for analysis CMSSW_1_6_12
- # of events analysed in signal = 240000
- # of events analysed in background = 234000
- CUTS Applied Pt(Photon) ≥ 10 GeV Pt(Jet) ≥ 10 GeV Eta(Photon) ≤ 2.7 Eta(Jet) ≤ 5.0

SIGNAL & BACKGROUND (Without Any Isolation Cut)

LHC Physics Workshop, TIFR, Mumbai

Isolation Variables Studied

> Tracker isolation : the number of tracks which have $P_T > P_T^{thres}$ (which has been taken as 1.0 GeV, 2.0 GeV & 3.0 GeV) lying in the Cone Size R around the photon candidate should be less than the threshold value.

ECAL isolation : the sum of the transverse energy of all the basic clusters lying in the Cone size R around the photon candidate should be less than the threshold value.

HCAL isolation : the sum of the transverse energy of all the particles depositing energies in the HCAL should be less than the threshold value lying in the Cone Size R around photon candidate.

After optimizing the cuts on these variables, we decided on the following values for the cuts which gave a better S/B ratio-

Isolation Cuts CUT A No of tracks around photon (Trackmin_Pt = 2GeV) = 0 • E_{TH}(Ecal) ≤ 2 GeV
 • E_{TH}(Hcal) ≤ 6 GeV CUT B No of tracks around photon (Trackmin_Pt = 2GeV) = 0

- E_{TH}(Ecal) ≤ 3 GeV
 E_{TH}(Hcal) ≤ 6 GeV

The $\Delta \emptyset$ Cut

Usually γ + jet events are produced back to back, but this condition is disturbed by initial and final state radiations. So the condition of P_{τ}^{γ} being back to back with P_{τ}^{jet} within $\Delta \phi$ can be given by the equation:

$\Phi(\gamma, jet) = 180^\circ \pm \Delta \phi$

where $\Phi(\gamma, jet)$ is the angle between P_{T}^{γ} and P_{T}^{jet} . The $\Delta \phi$ cut has been applied after applying all the isolation conditions.

"Obviously the back to back condition exploits the γ + 1 jet topology in the event"

SIGNAL & BACKGROUND (After Isolation Cut A)

Pt^γ > 40GeV & Pt^{Jet} > 40GeV

10/27/09

SUMMARY

- Due to large QCD backgrounds, we observe that Background dominates over signal (when no isolation cut is applied).
- In photon isolation studies , while studying the effect of the isolation parameters separately , we observe that Tracker isolation parameter gives maximum background rejection after which HCAL isolation becomes somewhat redundant.
- > After combining the effect of the all the three isolation variables together (choosing Cut A or Cut B), we observe that signal overtakes background only after 40GeV. For Pt^{γ} below 40Gev S/B is less than 1.0.
- As we increase cut on Pt^y & Pt^{Jet} we observe that the S/B ratio increases.
- > The $\Delta \emptyset$ Cut further enhances the S/B ratio with minimal loss in signal.

LHC Physics Workshop, TIFR, Mumbai

S/B optimization studies Results with MADGRAPH samples

- Centre of mass energy = 10 TeV
- Signal Photon+NJets
- Background NJets
- CMS Software Version used for analysis CMSSW_2_2_9
- # of events analysed in signal = 8318607
 - # of events analysed in background = 23606565
 - CUTS Applied Pt(Photon) ≥ 10 GeV Pt(Jet) ≥ 10 GeV Eta(Photon) ≤ 2.5 Eta(Jet) ≤ 5.0

16

The Loose and Tight criteria have been optimised by egamma group in CMS for this particular version of CMS software.

SUMMARY

- Studied the S/B ratio applying various levels of cuts
- a) Generator matching
 - b) Loose Photon Cut
 - a) Tight Photon Cut
- The tight photon selection gives a better S/B ratio.

•

•

•

•

10/27/09

CONCLUSIONS

- Direct Photon is an important channel at CMS.
- Jet production rates are a factor $10^3 10^4$ times more than direct photon signal and so background contribution becomes comparable to the signal.
- Thus the signal needs to be well distinguished from the background, which is done using certain detector isolation criteria.
- The S/B ratio is then well optimised.
 - We look at photons with P_T between 10 GeV & 200 GeV.
- This analysis is foreseen for the first data set of CMS.
 - The study can be done with few pb⁻¹ of initial data.

Alpgen DATASETS USED : Signal

/ph1j 20 60-alpgen/CMSSW 1 6 7-CSA07-1201165474/RECO /ph1j 60 120-alpgen/CMSSW 1 6 7-CSA07-1202106391/RECO /ph1j 120 180-alpgen/CMSSW 1 6 7-CSA07-1200559977/RECO /ph1j 180 240-alpgen/CMSSW 1 6 7-CSA07-1200560452/RECO /ph1j 240 300-alpgen/CMSSW 1 6 7-CSA07-1200560052/RECO /ph1j 300 7000-alpgen/CMSSW 1 6 7-CSA07-1203060287/RECO /ph2j 20 60-alpgen/CMSSW 1 6 7-CSA07-1200560085/RECO /ph2j_60_120-alpgen/CMSSW_1_6_7-CSA07-1200561475/RECO /ph2j 120 180-alpgen/CMSSW 1 6 7-CSA07-1200560242/RECO /ph2i 180 240-alpgen/CMSSW 1 6 7-CSA07-1200559924/RECO /ph2j 240 300-alpgen/CMSSW 1 6 7-CSA07-1200216383/RECO /ph2j 300 7000-alpgen/CMSSW 1 6 7-CSA07-1203060339/RECO /ph3j 20 60-alpgen/CMSSW 1 6 7-CSA07-1202106338/RECO /ph3j 60 120-alpgen/CMSSW 1 6 7-CSA07-1200561632/RECO /ph3j 120 180-alpgen/CMSSW 1 6 7-CSA07-1200560138/RECO /ph3j_180_240-alpgen/CMSSW_1_6_7-CSA07-1200560347/RECO /ph3j 240 300-alpgen/CMSSW 1 6 7-CSA07-1200561580/RECO /ph3j 300 7000-alpgen/CMSSW 1 6 7-CSA07-1202638149/RECO /ph4j_20_60-alpgen/CMSSW_1_6_7-CSA07-1201165529/RECO /ph4j 60 120-alpgen/CMSSW 1 6 7-CSA07-1200561528/RECO /ph4j 120 180-alpgen/CMSSW 1 6 7-CSA07-1200560294/RECO /ph4j 180 240-alpgen/CMSSW 1 6 7-CSA07-1202106442/RECO /ph4j 240 300-alpgen/CMSSW 1 6 7-CSA07-1200560189/RECO /ph4j 300 7000-alpgen/CMSSW 1 6 7-CSA07-1201630273/RECO

Alpgen DATASETS USED : Background

29

/Njet 2j 20_80-alpgen/CMSSW 1 6 7-CSA07-1199459756/RECO /Njet 2j 80 140-alpgen/CMSSW 1 6 7-CSA07-1200571375/RECO /Njet 2j 140 5600-alpgen/CMSSW 1 6 7-CSA07-1199459808/RECO /Njet 3j 20 80-alpgen/CMSSW 1 6 7-CSA07-1201165638/RECO /Njet 3j 80 140-alpgen/CMSSW 1 6 7-CSA07-1201165693/RECO /Njet 3j 140 180-alpgen/CMSSW 1 6 7-CSA07-1201011815/RECO /Njet 3j 180 5600-alpgen/CMSSW 1 6 7-CSA07-1201165748/RECO /Njet 4j 20 100-alpgen/CMSSW 1 6 7-CSA07-1200559608/RECO /Njet 4j 100 160-alpgen/CMSSW 1 6 7-CSA07-1200561423/RECO /Niet 4j 160 200-alpgen/CMSSW 1 6 7-CSA07-1201630335/RECO /Njet 4j 200 250-alpgen/CMSSW 1 6 7-CSA07-1197356250/RECO /Njet_4j_250_400-alpgen/CMSSW_1_6_7-CSA07-1200559608/RECO /Njet 4j 400 5600-alpgen/CMSSW 1 6 7-CSA07-1206675790/RECO /Njet 5j 20 100-alpgen/CMSSW 1 6 7-CSA07-1200559663/RECO /Njet 5j 100 160-alpgen/CMSSW 1 6 7-CSA07-1197355780/RECO /Njet_5j_160_200-alpgen/CMSSW_1_6_7-CSA07-1198677270/RECO /Njet 5j 200 250-alpgen/CMSSW 1 6 7-CSA07-1198677322/RECO /Njet 5j 250 400-alpgen/CMSSW 1 6 7-CSA07-1198677374/RECO /Njet_5j_400_5600-alpgen/CMSSW_1_6_7-CSA07-1206675842/RECO

10/27/09

Madgraph DATASETS USED

Signal

- /PhotonJets40to100-madgraph/Fall08_IDEAL_V11_redigi_v2/GEN-SIM-RECO
- /PhotonJets100to200-madgraph/Fall08_IDEAL_V11_redigi_v2/GEN-SIM-RECO
- /PhotonJets200toInf-madgraph/Fall08_IDEAL_V11_redigi_v2/GEN-SIM-RECO

Background

- /QCD100to250-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-RECO
- /QCD250to500-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-RECO
- /QCD500to1000-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-RECO
- /QCD1000toInf-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-RECO

MC Efficiency studies Preliminary Results with Pythia samples

- Centre of mass energy = 10 TeV
- Sample used Photon+Jet
- CMS Software Version used for analysis CMSSW_3_1_2

Barrel

10/27/09

After applying the $(E_T^{\gamma} - E_T^{SC})/E_T^{\gamma} < 0.2 \text{ Cut} ~ 95 \%$ After applying the $\Delta R(\text{Gen Photon & SC}) < 0.15 \text{ Cut} ~ 100 \%$ Endcaps After applying the $(E_T^{\gamma} - E_T^{SC})/E_T^{\gamma} < 0.2 \text{ Cut} ~ 51 \%$

After applying the ΔR (Gen Photon & SC) < 0.15 Cut ~ 100 %

(Numbers given are similar for both nearest & leading SC)

•

Pythia DATASETS USED

/PhotonJet_Pt15/Summer09-MC_31X_V3-v1/GEN-SIM-RECO