Methods for L1 trigger efficiency measurement using Cosmic Muon data (CRAFT08)

<u>Sunil Bansal</u> K.Mazumdar, J.B.Singh Ivan Mikulec

Outlines:

- Sample
- Track Selection
- Methods
- Performance of different methods
- Conclusions

Sample

MC: /CosmicMC_BON_10GeV_AllCMS/Winter09_COSMMC_22X_V6_TrackingPointing_ToscaMap090322_v1/GEN-SIM-RAW-RECO

CRAFT08 data:

/Cosmics/Commissioning08_CRAFT_ALL_V12_229_Tosca090322_ReReco_FromTrackerPointing_v1/RAW-RECO

- \rightarrow Tracker pointing tracks
- → MC and data are skimmed for tracker pointing muons : R = 90 cm and z = 130 cm
- \rightarrow Re-processed with new B-field

Runs Number				
Run Number	number of events			
66676	143182			
66722	347929			
66740	185505			
66746	198530			
66748	287440			
66783	267735			
67818	420791			

Table 1: List of good runs used.

Track Selection

- Standalone Track Collection "cosmicMuons1Leg".
- Taking only downward tracks ($p_v < 0$).
- Momentum of tracks > 5 GeV
- $hits_{DT} + hits_{RPC} > 20$

$\operatorname{Run} \rightarrow$	data	Monte-Carlo
Cut ↓		
downward tracks	91.56 ± 0.02	96.53 ± 0.02
Momentum $> 5 \text{ GeV}$	79.62 ± 0.03	92.85 ± 0.03
$Hits_{DT} + Hits_{RPC} > 20$	88.59 ± 0.03	86.82 ± 0.03

Tag&Probe

 Tracks propagated (taking outermost point) along/opposite the momentum upto 2nd muon (R = 500 cm) MB station (bottom) using Stepping Helix propagator.
 → Direction of propagation is decided by checking Outermost position WRT 2nd MB station.

If r (outermost Position) > R : Opposite to Momentum

If r (outermost Position) < R : Along the Momentum

• L1 trigger DT || RPC object checked in the vicinity of tag.

If trigger found, propagate the track (taking innermost point) in top half upto in 2nd muon station. Look for trigger !

→ Direction of propagation is decided by checking innermost position WRT 2^{nd} MB station.

If r (innermost Position) > R : Along the Momentum

If r (innermost Position) < R : Opposite to Momentum

• This method is based on the redundancy of Muon system if one trigger is fire in some region, second trigger must be fired.

 Propagate track in any direction (top half in present case) look for the RPC (DT) trigger in the vicinity of the track. If RPC (DT) trigger search for DT (RPC) trigger in same region.

DT Efficiency

- Most of the inefficiency is because geometrical acceptance (like cracks, chimneys).
- Effect of cracks between YB+-2 and YB+-1 is not visible because of selecting only tracker pointing muons

RPC Efficiency

• DTvsRPC method is not good in the region where DT and RPC triggers have correlated inefficiency

Performance with MC

Ratio of DT Efficiency Ratio of RPC Efficiency Monte-Carlo Monte-Carlo Ф-position 5.2 а Ф-position 5.2 0.8 0.8 0.6 0.6 1.5 1.5 0.4 0.4 0.2 0.5 0.2 0.5 n n -200 600 0 200 400 -600 -400 -600 600 -200 200 -400 400z-position z-position

→DTvsRPC and Tag&Probe methods are in good in agreement even for MC

DT & RPC efficiency as function of track momentum

→ This difference disappear with removal these regions (next slides) 25/10/2009 LHC Physics Workshop, Mumbai, 2009

Acceptance cut:

Aims to select only center of the sector (top 3) in center of the wheels

- |z-position| < 100 cm or (|z-position| < 300 cm and |z-position| > 200 cm) or (|z-position| < 550 cm and |z-position| > 450 cm).
- ($\Phi>0.96$ rad. and $\Phi<1.13$ rad.) or ($\Phi>1.48$ rad. and $\Phi<1.66$ rad.) or ($\Phi>2.01$ rad. and $\Phi<2.18$ rad.)

Z and φ are the positions of the tracks at 2^{nd} muon station in top half

Comparison after removal of cracks

Results in CRAFT paper for L1 DPG

 \rightarrow DT & RPC efficiency, z/ Φ map and function track pT ,using Tag&Probe method (which more unbiased compare to DTvsRPC)

Conclusions/To-Do

- DT Efficiency: 92-96% (using DTvsRPC and TP method) at high pT. At low pT 70-90% (TP method) an 90-92% (DTvsRPC method).
- DT efficiency inside the sector agrees with expected intrinsic DT trigger primitive efficiency (92-98%)
- RPC Efficiency: 85-90% (using DTvsRPC method and TP method).
- DTvsRPC and TP method give good agreement (difference 2-3%).
- Both methods give similar performance for MC as well qualitatively.
- Re-checking performance of two methods with CRAFT09 data
 Estimation of RPC and CSC trigger efficiency in endcap

Access of Informations

1-leg

cosmic reco

Muon Collection:

edm::Handle<reco::TrackCollection> muonHandle; iEvent.getByLabel(cosmicMuon1Leg,muonHandle);

RPC barrel Trigger:

edm::Handle<std::vector<L1MuRegionalCand> > rpcBarrel; iEvent.getByLabel ("gtDigis","RPCb",rpcBarrel);

DT Trigger:

edm::Handle<std::vector<L1MuRegionalCand> > DT; iEvent.getByLabel ("gtDigis","DT",DT);

Propagation of tracks :

SteppingHelixPropagator *thePropA = new SteppingHelixPropagator(&*bField,oppositeToMomentum/Along);

 \rightarrow Track is propagated upto 2nd Muon Station (Trigger information (eta/phi) evaluated here). On the surface of cylinder with radius R = 500 cm

Trigger Matching

Only Δφ matching because η is not well configured for DT trigger primitive

L1 efficiency	DT matching at Top	DT matching at Bottom	RPC matching at Top	RPC matching at Bottom		
Tag&Probe method						
DT efficiency	0.872 rad. (50°)	0.872 rad. (50°)	-	0.513 rad. (30 °)		
RPC efficiency	-	0.872 rad. (50°)	0.872 rad. (50°)	0.513 rad. (30 °)		
DTvsRPC method						
DT efficiency	0.872 rad. (50°)	-	0.513 rad. (30 °)	-		
RPC efficiency	0.872 rad. (50°)	-	0.872 rad. (50°)	-		

→ Wide $\Delta \phi$ used for matching because of mis -configuration of some channels in the trigger primitive assignment $_{25/10/2009}$ LHC Physics Workshop, Mumbai, 2009 15

Charge dependence

Ratio of RPC Efficiency for +ve and –ve muons

Ratio of DT Efficiency for +ve and –ve muons

\rightarrow There seems to be no biases because of charge of tracks

Integrated Trigger efficiency

Method	Trigger	Charge	data	Monte-Carlo
DTvsRPC method	DT Eff.	μ^+	95.29 ± 0.06	97.44 ± 0.07
		μ^{-}	95.15 ± 0.07	97.49 ± 0.08
	RPC Eff.	μ^+	87.04 ± 0.10	72.24 ± 0.17
		μ^{-}	86.62 ± 0.11	72.44 ± 0.19
Tag&Probe method	DT Eff.	μ^+	92.56 ± 0.08	96.97 ± 0.07
		μ^{-}	93.12 ± 0.09	97.00 ± 0.08
	RPC Eff.	μ^+	86.24 ± 0.11	(71.99 ± 0.18)
		μ^{-}	86.58 ± 0.12	72.07 ± 0.20
Combined method	DT Eff.	μ^+	92.94 ± 0.07	96.90 ± 0.07
		μ^{-}	93.19 ± 0.08	96.90 ± 0.07
	RPC Eff.	μ^+	85.07 ± 0.10	71.82 ± 0.16
		μ^{-}	84.98 ± 0.11	71.98 ± 0.19

Table 4: DT/RPC trigger efficiency estimated using different method.

 \rightarrow RPC efficiency is low in case of MC because RPC trigger pattern is not properly set.