# A proposal for an underground facility for nuclear astrophysics

### Satyaranjan Santra

Nuclear Physics Division Bhabha Atomic Research Centre, Mumbai

6<sup>th</sup> August, 2022

1

Discussion meeting on underground facility in India

# **Outline of the presentation**

Underground facilities for nuclear astrophysics
Reactions of interest
Present status of a few
Proposed accelerator
Proposal for AJT & RMS
Summary

6<sup>th</sup> August, 2022

Discussion meeting on underground facility in India

#### Underground accelerator facilities around the World



SURF:Sanford underground Research Facility, South Dakota CASPAR:Compact Accelerator System for Performing Astrophysical Research 6 Major facilities:

5 of them are very recent (within last 5 years)

## Flux attenuation at different underground labs



# **Reactions of interest - 1**

| SL<br>no. | Reactions                              | Physics                        | Gammow<br>peak (keV) | X-section<br>(barn)               | Labs<br>interested             | Existing<br>error | Reference                           |
|-----------|----------------------------------------|--------------------------------|----------------------|-----------------------------------|--------------------------------|-------------------|-------------------------------------|
| 1         | <sup>14</sup> N(p,γ) <sup>15</sup> O   | CNO                            | 148                  | 10 <sup>-13</sup>                 | LUNA, CASPER                   |                   |                                     |
| 2         | <sup>12</sup> C+ <sup>12,13</sup> C    | C burning                      | 820                  | 10 <sup>-13</sup> (2.4<br>MeV)    | LUNA                           |                   |                                     |
| 3         | <sup>13</sup> C(α,n) <sup>16</sup> O   | Heavy Ion<br>synthesis,<br>AGB | 300                  | 10 <sup>-16</sup>                 | LUNA, JUNA,<br>CUNA,<br>CASPER | <b>60</b> %       | Astrophys. J.,<br>414 (1993)<br>735 |
| 4         | <sup>22</sup> Ne(α,n) <sup>25</sup> Mg | Heavy Ion<br>synthesis,<br>AGB |                      |                                   | LUNA, CUNA,<br>CASPER          |                   |                                     |
| 5         | <sup>22</sup> Ne(p,γ) <sup>23</sup> Na | Synthesis in<br>AGB stars      | 190                  | 2.4x10 <sup>-3</sup> (290<br>keV) | LUNA                           | Up to 3<br>orders |                                     |

Same reaction is addressed by multiple labs  $\rightarrow$  to reduce uncertainties using different techniques

# **Reactions of interest - 2**

| SL<br>no. | Reactions                                  | Physics                    | Gammow<br>peak (keV) | X-section<br>(barn)             | Labs<br>interested | Existing<br>error | Reference                      |
|-----------|--------------------------------------------|----------------------------|----------------------|---------------------------------|--------------------|-------------------|--------------------------------|
| 6         | <sup>12</sup> C(α,γ) <sup>16</sup> O       | Massive<br>star            | 300                  | 10 <sup>-17</sup>               | LUNA,<br>JUNA      | <b>60</b> %       | NPA <b>, 758</b><br>(2005) 363 |
| 7         | <sup>18</sup> Ο(p,α) <sup>15</sup> Ν       | CNO                        | 160                  | 3x10 <sup>-5</sup><br>(240 keV) | LUNA               |                   |                                |
| 8         | <sup>19</sup> F(p,α) <sup>16</sup> O       | F<br>abundance             | 100                  | 7x10 <sup>-9</sup>              | JUNA               | 80%               | PLB <b>, 748</b><br>(2015) 178 |
| 9         | <sup>25</sup> Mg(p,γ) <sup>26</sup> A<br>Ι | Galaxy<br><sup>26</sup> Al | 58 (reso)            | 2x10 <sup>-13</sup>             | JUNA               | 20%               | PLB <b>707</b><br>(2012) 60    |

Gamow energies  $\sim$  a few keV to 100's of keV

Cross sections  $\sim$  as low as 10<sup>-17</sup> barn  $\rightarrow$  not possible to measure over ground due cosmic background

# <sup>12</sup>C( $\alpha$ , $\gamma$ )<sup>16</sup>O, holy grail in Nuclear Astrophysics



#### Highly sought-after reaction data related to carbon/oxygen ratio in the Universe.

□JUNA approach: high-intensity alpha beam on carbon target



Felsenkeller: Carbon beam on helium gas target, inverse kinematics ( ${}^{13}C(\alpha,n){}^{16}O$  x-section is 5 order more, tgt contamination is a problem)

## Gamow energies for ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction at diff. sites

TABLE I. Astrophysical environments and burning stages where the  ${}^{12}C(\alpha, \gamma){}^{16}O$  reaction plays an important role. The temperatures of these environments dictate the energy ranges where the  ${}^{12}C(\alpha, \gamma){}^{16}O$  cross section must be well known for an accurate calculation of the reaction rate.

| Burning stages                       | Astrophysical sites         | Temperature range (GK) | Gamow energy range (MeV) |  |
|--------------------------------------|-----------------------------|------------------------|--------------------------|--|
| Core helium burning                  | AGB stars and massive stars | 0.1-0.4                | 0.15-0.65                |  |
| Core carbon and oxygen burning       | Massive stars               | 0.6-2.7                | 0.44-2.5                 |  |
| Core silicon burning                 | Massive stars               | 2.8-4.1                | 1.1–3.4                  |  |
| Explosive helium burning             | Supernovae and x-ray bursts | $\approx 1$            | 0.6-1.25                 |  |
| Explosive oxygen and silicon burning | Supernovae                  | > 5                    | > 1.45                   |  |

□Nearly all models of different nucleosynthesis environments are affected by the production of carbon and oxygen

□Precise (within 10%) determination of the reaction rate of  ${}^{12}C(\alpha,\gamma){}^{16}O$  is a key ingredient

Propose to use inverse kinematics i.e., Carbon beam on helium gas target and Recoil Mass Separator

## 13C(α,n): S-process for Heavy Ion formation

- Normalization of data under debate
- Data unavailable in Gammow region
- Beam from MV machine with inverse kinematics can be used covering a wide range of energies
- RMS for background reduction



## <sup>3</sup>He( $\alpha,\gamma$ )<sup>7</sup>Be: PP chain & Li abundance

- Affects i) hydrogen burning in Sun and production of ii) 7Li in Big bang nucleosynthesis and iii) 7Be and 8B solar neutrino fluxes.
- Direct measurement data around Gamow peaks (25 and 250 keV) are sparse
- Proposed underground accelerator facility can cover the entire energy (20-500 keV) of interest and RMS for background reduction



## <sup>12</sup>C+<sup>12,13</sup>C fusion: <sup>23</sup>Na/<sup>20</sup>Ne

- Direct measurement data around Gamow peaks (<1 MeV) not available</li>
- <sup>12</sup>C(<sup>12</sup>C,pγ)<sup>23</sup>Na and
   <sup>12</sup>C(<sup>12</sup>C,αγ)20Ne . Ratio of
   <sup>23</sup>Na to <sup>20</sup>Ne important
- Proposed underground accelerator facilities can cover the entire energy of interest



# Required terminal voltage for proposed experiments

# Maximum energy chosen to cover is 2 MeV, because

- High energy data required for S-factor normalization
- To avoid tail of resonances around 1 MeV for some reactions, normalization at higher energy required
- Inverse kinematics and RMS to be used to reduce background

|   | Direct Kinematics)                    | Ecm=2 MeV, IKR | Q | TP  |
|---|---------------------------------------|----------------|---|-----|
|   | LUNA- MV First 5 year                 |                |   |     |
| Α | $^{14}N(p,\Upsilon)^{15}O$            | 30             | 6 | 5   |
| В | <sup>12</sup> C+ <sup>12</sup> C*     | 24             | 5 | 4.8 |
| С | <sup>13</sup> C(α,n) <sup>16</sup> O  | 10             | 3 | 3.5 |
| D | $^{22}Ne(\alpha,n)^{25}Mg$            | 15             | 3 |     |
| Е | $^{22}Ne(p,\Upsilon)^{23}Na$          | 46             | 9 | 5   |
|   | Dresden:                              | 1.21           |   | 4   |
| F | <sup>12</sup> C(α,Υ) <sup>16</sup> O* | 8              | 2 | 4   |
| G | $^{18}O(p.\alpha)^{15}N$              | 38             | 8 | 4.8 |
|   | Monochromatic neutron                 |                |   |     |
|   | source                                |                |   |     |
| H | <sup>7</sup> Li(p,n) <sup>7</sup> Be  | 14.5           | 3 | 4.8 |

# Proposal for an underground accelerator facility

Phase I: 400 kV high current accelerator with an ECR source Timeline = 2024-2034; Cost~140 Cr (excluding tunnel works)



#### Space =50 m x 20 m Project duration=15 years

Phase-II : 5 MV single ended ECR based Pelletron accelerator Timeline=2034-2039, Cost~150 Cr)



Tentative cost=290 crore

# Implementation/Delivery

| Year                               | Implementation/Delivery                                             |  |  |
|------------------------------------|---------------------------------------------------------------------|--|--|
| Phase-I                            |                                                                     |  |  |
| $1^{st} - 3^{rd}$                  | Building of tunnels and caverns; design of laboratories, beam       |  |  |
|                                    | lines & experiments                                                 |  |  |
| $4^{\text{th}}$ to $7^{\text{th}}$ | Procurement and commissioning of a 400 keV machine; setting         |  |  |
|                                    | up of experimental facilities including beam lines, detector array, |  |  |
|                                    | target assembly and data acquisition system                         |  |  |
| $7^{\text{th}} - 10^{\text{th}}$   | Phase-I activities including a few challenging experiments will     |  |  |
|                                    | be completed                                                        |  |  |
| Phase-II                           |                                                                     |  |  |
| $11^{\text{th}} - 15^{\text{th}}$  | Procurement and commissioning of 5 MV machine; setting up of        |  |  |
|                                    | experimental facilities; Experiments using MV machine               |  |  |

#### End of first presentation

Summary at the end of 2<sup>nd</sup> presentation

### AJT coupled to an RMS for deep underground measurements - J J Das

Concept proposal: AJT coupled to an RMS for deep underground measurements at INO

Raktima Kalita, Nabajyoti Pandit, Mridul Deka, Dimpal Saikia, Sakera Khatun, A Barthakur, M Baro, J J Das, A MP Hussain, A K Nath, M Patgiri, D Sarma, G C Wary: Department of Phys., Cotton University, Guwahati, Assam Moon Moon Devi, Department of Physics, Tezpur Central University, Tezpur, Assam Monisa Rajkhowa Dept of Physics: Jorhat Institute of Science and Technology, Jorhat, Assam B Lalremruata: Department of Physics, University of Mizoram, Aizwal L Borah: Department of Life Sciences, Nagaland University, Kohima, Nagaland. R Brahma: Department of Physics, Bodoland University, Kokrajhar, Assam K. Boruah, K Kalita: Physics Department, Gauhati University, Assam B M Jyrwa: Department of Physics, NEHU, Shillong, Meghalaya S Badwar: Department of Physics, Sankardev College, Shillong, Meghalaya B Lawriniang: Lady Keane College, Shillong, Meghalaya. S K Dhiman: Department of Physics, Himachal Pradesh University, Shimla S Santra, P C Rout: Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai A Jhingan, N Madhavan, R P Singh, S Nath, J Gehlot, Gonika: IUAC, New Delhi R Raut, S Ghugre, A K Sinha: UGC DAE CSR, Kolkata Centre, Kolkata D Kumar, Tumpa Bhattacharjee: VECC, Kolkata B K Nayak: HBNI, Mumbai V M Datar: IMSC, Chennai

Nabajyoti Pandit Dimpal Saikia

## **CUPAC-NE Proposal for Underground facility**

•If the "accelerator system for nuclear astrophysics at INO site" is approved, then

•CUPAC-NE collaboration would like to participate in construction of some instrumentations of common interest:

- 1. AJT (Advanced Jet Target) Close loop supersonic Jet target
- 2. An RMS of MD-ED-MD type (with rotation) with compact foot print
- 3. Strictly monochromatic neutron source for investigation of s-process in AGB stars
- 4. Explore extracting beam in space charge limited domain

#### **Advanced Jet Target system**



Simplified scheme of the LUNA recirculation gas target

exhaust system **Design of windowless gas target** 

#### **Recoil mass separator at Underground: first time**

•LUNA Data precision limited by backgrounds: natural, beam induced and target
→RMS can provide a solution: NOT used underground so far
Inverse kinematics → interchange target & projectile
→ improves accuracy: reduces systematic errors



#### **CUPAC-NE-BARC Concepts: AJT+RMS**

•AJT: Reduce systematic errors (use <sup>3</sup>He,<sup>3</sup>H gas target with recirculation target)
•RMS: Eliminate beam and natural background and target impurity
•Novel RMS design: very compact PIMS + HIRA ED1 slot+ RIB optics for IKR

### Recoil mass separator at Underground: first time

#### Propose: A Rotatable PIMS spectrometer: MD-ED-MD

Doubly focusing spherical ED, No quadrapoles

#### Novelty of the concept: MD-ED-MD similar to HIRA (ED-MD-ED)

- 1. Compact foot print, no quadrapoles, hardware corrections of aberrations
- 2. Spherical doubly focusing ESA (Electrostatic Analyzer) [Das 1997]
- 3. Anode slot like HIRA for High current operation [Sinha 1997]

**Experience in ion optics:** GIOS, GICOZY for inverse kinematic reactions IKR [Das 2005], SIMION 8.2



**PIMS** spectrometer

## **HIRA** spectrometer layout and optics



# Investigation of s-process for neutron sources in AGB stars using monochromatic neutron source

#### Novelty of the concept:

- 1. Strictly monochromatic neutron beam, kinematic reconstruction
- 2. p(<sup>7</sup>Li,<sup>7</sup>Be)n at 14.5 MeV with <sup>7</sup>Be kinematic coincidence
- 3. Normalization of neutron flux using counting of <sup>7</sup>Be in PPAC
- 4. Neutrons produced in <1Sr forward solid angle due to IKR, so >90% contamination caused by backward scattered neutrons vastly eliminated.
- 5. Reconstruction of neutron energy from Be angle using kinematics



#### NOT done before

## Potential CUPAC-NE-BARC contribution : monochromatic neutron source



## **Potential CUPAC-NE contribution : Space charge limited beam extraction**

Commercial accelerators don't have space charge Compensation, current LIMIT <1 mA.</li>
Some hands on experience at Cotton
Designed and implemented Space charge

compensation at ISTF3, ORNL

•Would like to explore  $\sim 5 \text{ mA}$ 

#### SIMION 8.0: Space charge can be estimated. Gerald Alton suggested following:

Trap electrons by a negative electrode. High +ve charge of Beam attracts electrons and exits as space charge balanced beam

#### **Commissioning results of ISTF3, ORNL**



[Das2013] JJ Das, HK Carter, JR Beene, BM Sherrill Journal of Physics: 420 (1), 012165 1 2013





# Summary & conclusions

□A lot of opportunity exists to explore the reactions of interest to nuclear astrophysics, specially relevant to He and C, due to unavailability of data around the Gamow region and large uncertainties in experimental data

□To keep pace with the international community of nuclear astrophysics a deep (>1.5 km) underground accelerator facility is essential

□Proposed Accelerator facility, with 400 keV (phase-I) and 5 MV single ended (phase-II), will be able to cover the energy range of interest including inverse kinematics

□The above facility coupled with Recoil Mass Separator and windowless gas target will be a unique facility in the world

Thank you for your kind attention